Calculus III Summary

This page contains a list of tables that summarize the relationships between various ideas in multi-variable calculus (Calculus III). This is information is by no means complete. (I cannot emphasize this enough.) Examples of what’s not in the summary:

{$ \gdef\aa{\mathbf{a}} \gdef\bb{\mathbf{b}} \gdef\hb{\mathbf{\hat{b}}} \gdef\cc{\mathbf{c}} \gdef\uu{\mathbf{u}} \gdef\vv{\mathbf{v}} \gdef\ww{\mathbf{w}} \gdef\nn{\mathbf{n}} \gdef\pp{\mathbf{p}} \gdef\qq{\mathbf{q}} \gdef\rr{\mathbf{r}} \gdef\FF{\mathbf{F}} \gdef\GG{\mathbf{G}} \gdef\DD{\mathbf{D}} \gdef\SS{\mathbf{S}} \gdef\TT{\mathbf{T}} \gdef\NN{\mathbf{N}} \gdef\cross{\!\times\!} \gdef\dot{\cdot} \gdef\grad{\nabla} \gdef\curl{\grad\cross} \gdef\div{\grad\dot} \gdef\tgrad{\text{grad}\;} \gdef\tcurl{\text{curl}\;} \gdef\tdiv{\text{div}\;} \gdef\pdiff#1#2{\frac{\partial #1}{\partial #2}} \gdef\proj{\text{proj}} \gdef\comp{\text{comp}} \gdef\orth{\text{orth}} \gdef\vvec#1{\left<#1\right>} $}

Dot and Cross Products

Dot Cross
Resultscalar-valuedvector-valued
Trig{$\aa\dot\bb=|\aa|\;|\bb|\;\cos(\theta)$}
{$\displaystyle \Rightarrow \cos(\theta)=\frac{\aa\dot\bb}{|\aa|\;|\bb|}$}
{$|\aa\cross\bb|=|\aa|\;|\bb|\;\sin(\theta)$}
{$\displaystyle\Rightarrow \sin(\theta)=\frac{|\aa\cross\bb|}{|\aa|\;|\bb|}$}
Meaningprojection(oriented) area of parallelogram
Application{$W\text{ork} = \FF\dot\DD$}{$\tau\text{orque}=\rr\cross\FF$}
Properties{$\aa\dot\bb = \bb\dot\aa$}{$\aa\cross\bb = -\bb\cross\aa$}
In general, {$\aa\cross(\bb\cross\cc) \ne (\aa\cross\bb)\cross\cc$}
Orientation{$\aa\dot\bb = 0 \quad \Rightarrow \quad \aa\perp\bb$}{$\aa\cross\bb = \mathbf{0} \quad \Rightarrow \quad \aa\parallel\bb$}
ObjectsPlane: {$\nn\dot(\rr-\rr_0)=\mathbf{0}$}Line: {$\vv\cross(\rr-\rr_0)=0$}
CombinationsVolume of parallelepiped: {$\aa\dot(\bb\cross\cc) = (\aa\cross\bb)\dot\cc$}
{$(\aa\dot\bb)^2 + |\aa\cross\bb|^2 = |\aa|^2|\bb|^2 \qquad$} (follows from {$\cos^2\theta + \sin^2\theta = 1$})
{$\aa\cross(\bb\cross\cc) = (\aa\dot\cc)\bb - (\aa\dot\bb)\cc$}

Compound operators and distances

arbitrary {$\bb$} unit {$\hb =\frac{\bb}{|\bb|}$} proj and orth operators
{$\comp_\bb(\aa)$} {$\displaystyle \frac{\aa\cdot\bb}{|\bb|}$} {$\aa\cdot\hb$}
{$\proj_\bb(\aa)$} {$\displaystyle \big(\comp_\bb(\aa)\big) \frac{\bb}{|\bb|} = \frac{\aa\cdot\bb}{\bb\cdot\bb}\bb$} {$(\aa\cdot\hb)\hb$}
{$\orth_\bb(\aa)$} {$\aa - \proj_\bb(\aa)$} {$\aa - \proj_\hb(\aa)$}

You only need to remember the third column! The second one follows using the transformation {$\hb=\frac{\bb}{|\bb|}$}.

Distance between a point {$\pp$} and …
a point {$\qq$} {$|\pp-\qq| = \sqrt{(\pp-\qq)\cdot(\pp-\qq)}$}
a line through {$\qq$} in direction {$\vv$} {$|\orth_\vv(\pp-\qq)|$}
a plane through {$\qq$} with normal {$\nn$} {$|\proj_\nn(\pp-\qq)| = |\comp_\nn(\pp-\qq)|$}
an implicit surface {$g(x,y,z)=k$} minimize {$|\pp-\vvec{x,y,z}|^2$} subject to constraint {$g(x,y,z)=k$}

Note that this table refers to points using their position vectors in order to use the vector operators.

Coordinate systems

 CartesianCylindricalSpherical
Conversion{$x = x$}
{$y = y$}
{$z = z$}
{$x = r\cos(\theta)$}
{$y = r\sin(\theta)$}
{$z = z$}
{$x = \rho\cos(\theta)\sin(\phi)$}
{$y = \rho\sin(\theta)\sin(\phi)$}
{$z = \rho\cos(\phi)$}
Ranges{$x \in (-\infty, \infty)$}
{$y \in (-\infty, \infty)$}
{$z \in (-\infty, \infty)$}
{$r \in [0, \infty)$}
{$\theta \in [0, 2\pi)$}
{$z \in (-\infty, \infty)$}
{$\rho \in [0, \infty)$}
{$\theta \in [0, 2\pi)$}
{$\phi \in [0, \pi]$}
{$dV$}{$dx\;dy\;dz$}{$r\;dr\;d\theta\;dz$}{$\rho^2\sin(\phi)\;d\rho\;d\theta\;d\phi$}

Differentials/Integrals

Area{$dA = dx\;dy = r\;dr\;d\theta$}{$\int_D dA = A(D) =$} area
Volume{$dV = dx\;dy\;dz = r\;dr\;d\theta\;dz = \rho^2\sin\phi\;d\rho\;d\phi\;d\theta$}{$\int_E dV = V(E) =$} volume
Line{$d\rr = \rr'(t)dt = \TT ds$}
{$ds = |\rr'(t)|dt = \TT \cdot d\rr$}
{$\int_a^b d\rr = \rr(b)-\rr(a) =$} displacement
{$\int_a^b ds = $} arc length
Surface{$d\SS = \rr_u\times\rr_v dA = \nn dS$}
{$dS = |\rr_u\times\rr_v| dA = \nn \cdot d\SS$}
{$\int_S dS = A(S) =$} surface area

Curves and Surfaces

 RepresentationTangentNormalLength/Area
Parametric
curve
{$\rr(t)$}{$\rr'(t)$}
{$\TT(t)=\frac{\rr'(t)}{|\rr'(t)|}$}
(2D) rotate tangent
(3D) {$\NN(t)=\frac{\TT'(t)}{|\TT'(t)|}$}
{$\int_C ds = \int_C |\rr'(t)|\;dt$}
Parametric
surface
{$\rr(u,v)$}{$\rr_u$}, {$\rr_v$}{$\displaystyle \nn = \frac{\rr_u\cross\rr_v}{|\rr_u\cross\rr_v|}$}{$\int_S dS = \iint_D |\rr_u\cross\rr_v|\;dA$}
Level curves{$f(x,y)=c$}{$\left<dx,dy\right>$} or
{$\left<1,\frac{dy}{dx}\right>$} or
{$\left<\frac{dx}{dy},1\right>$}
(slope = {$\frac{dy}{dx}$})
{$\grad f$} 
Level surface{$f(x,y,z)=c$}If, implicitly, {$z=g(x,y)$},
then the tangents are {$\left<1,0,g_x\right>, \left<0,1,g_y\right>$},
where {$(g_x,g_y)=-\left(\frac{f_x}{f_z}, \frac{f_y}{f_z}\right)$}.
{$\grad f$} 

Generalizations of the Fundamental Theorem

To see the vector-inspired analogy, you should treat {$\grad$} as {$\left<\pdiff{}{x}, \pdiff{}{y}, \pdiff{}{z}\right>$}.

Differential
Geometry
notation →
{$\omega$} is a 0-form, 1-form, 2-form, or 3-form {$d$} = exterior derivative on {$k$}-forms (manifests itself as {$\tgrad$}, {$\tcurl$}, and {$\tdiv$} on scalar-, vector-, and bivector-valued functions) {$d\;d\omega = 0$}
signed
value
{$1$} scalar {$f$}
from previous row to next{$\grad$}
oriented
length
{$\vv\;\;1 = \vv$} vector {$\tgrad f = \grad f$} {$\curl \grad f = \mathbf{0}$}
from previous row to next{$\curl$}
oriented
area
{$\uu\cross\vv$} bivector (vector-valued) {$\tcurl \FF = \curl \FF$} {$\div \curl \FF = 0$}
from previous row to next{$\div$}
signed volume {$\ww\dot(\uu\cross\vv)$} trivector (scalar-valued) {$\tdiv \GG = \div \GG$}

Differential
Geometry
notation →
Generalized Stokes' Theorem {$\int_{\Omega} d\omega = \oint_{\partial\Omega} \omega$}
{$\grad$} Fundamental Theorem
of Calculus ({$f$} univariate)
{$\int_{[a,b]} df = \int_a^b f'(x)dx = f(b) - f(a)$}
Fundamental Theorem
of Line Integrals ({$f$} multivariate)
{$\int_{C} (\grad f) \dot d\rr = f(\rr(b)) - f(\rr(a))$}
{$\curl$} Green's Theorem (2D) {$\iint_{D} \left(\pdiff{Q}{x} - \pdiff{P}{y}\right) dA = \int_{\partial D} P\;dx + Q\;dy$}
{$\iint_{D} (\curl \FF) \dot \mathbf{k} \;dA = \oint_{\partial D} \FF \dot d\rr = \oint_{\partial D} \FF \dot \TT ds$}
Stokes' Theorem (3D) {$\iint_{S} (\curl \FF) \dot d\SS = \oint_{\partial S} \FF \dot d\rr = \oint_{\partial S} \FF \dot \TT ds$}
{$\div$} Green's Theorem variant (2D) {$\iint_{D} \div \FF\;dA = \oint_{\partial D} \FF \dot \NN\;ds$}
Divergence Theorem (3D) {$\iiint_{E} \div \FF\;dV = \iint_{\partial E} \FF \dot d\SS = \iint_{\partial E} \FF \dot \nn dS$}

For each of {$\tgrad$}, {$\tcurl$}, and {$\tdiv$} above, the first fundamental theorem is a specialization of the second one that appears in the table cell below it.