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Abstract

Global parametrization of surfaces requires singularities (cones) to
keep distortion minimal. We describe a method for finding cone
locations and angles and an algorithm for global parametrization
which aim to produce seamless parametrizations with low metric
distortion. The idea of the method is to evolve the metric of the
surface, starting with the original metric so that a growing frac-
tion of the area of the surface is constrained to have zero Gaussian
curvature; the curvature becomes gradually concentrated at a small
set of vertices which become cones. We demonstrate that the re-
sulting parametrizations have significantly lower metric distortion
compared to previously proposed methods.
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1 Introduction

Global parametrization, i.e. a map from a surface to the plane, can
be continuous and everywhere locally injective only for domains
of disk topology; even for these domains, [Kharevych et al. 2006]
observed that singularities (cones) and cuts may be necessary to re-
duce the distortion to an acceptable level. More generally, a global
parametrization can be defined as a flat metric on the surface, with
isolated cones where all Gaussian curvature is concentrated. If the
surface is cut to a disk with the cut going through all cones, the
metric determines a mapping to the plane up to a rigid transform.

One of the common goals for surface parametrization is to
minimize a measure of metric distortion. For a non-singular
parametrization of a disk, this amounts to minimizing a smooth
energy measuring distortion. However, if cones can be added to
the parametrization, the problem becomes far more complicated:
one needs to find cone positions and the integral Gaussian curva-
ture (cone angle) concentrated at each cone. As shown in [Bunin
2008] for conformal maps, this problem is related to a type of in-
verse Poisson problem, which is generally ill-posed and expensive
to solve.

We propose a method, which we call incremental flattening, for
placing cones on the surface. The idea of the method is to evolve
the metric of the surface, starting with the embedding metric so
that a growing fraction of the area of the surface is constrained to
have zero Gaussian curvature. The Gaussian curvature becomes
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concentrated in isolated shrinking areas, which eventually give rise
to cones.

In this paper we focus on seamless global parametrizations, for
which parametric lines in the plane continue smoothly across seams
(the concept is defined more precisely in Section 3). Seamless
parametrizations are most valuable for applications, as they allow to
generate quadrangulations and tile the surface seamlessly with tex-
ture maps. We note that our definition of seamless parametrization
is adequate for generating fine quadrangulations and texture map-
ping, but additional constraints on parametric positions of cones are
needed for coarse quadrangulations (cf. [Bommes et al. 2009] and
discussion in Section 3).

A seamless parametrization has constraints on cone angles (they
have to be multiples of π/2) and the rotation of the parametrization
gradient along noncontractible loops. These requirements substan-
tially change the nature of the problem: if arbitrary cone angles are
allowed, it is clear that the mesh parametrization can be made per-
fectly isometric by inserting cones at all vertices; on the other hand,
with kπ/2 constraints on cone angles, having cones at all vertices
is clearly suboptimal. Another consequence is that the problem be-
comes a mixed-integer problem which can be NP-hard (Section 5).

Figure 1: Algorithm stages. Left-to-right: original surface curva-
ture; result of conformal flattening concentrating curvature at cone
candidates. Seamless parameterization after iterative rounding of
cone angles and collapsing nearby cones.

Our main contributions include the following:

• We describe a distortion-minimizing incremental procedure
for flattening and cone angle determination; we show that it
can be implemented efficiently with incremental linear solves
by using a conformal map as a proxy for the distortion-
minimizing map.

• We extend the as-rigid-as-possible (ARAP) parametrization
of disk-topology surfaces to general surfaces, and demon-
strate how a cross-field optimization can be used for efficient
ARAP computation.

• We demonstrate that the cones determined by our procedure,
followed by the generalized ARAP parametrization, yield a
substantially lower parametrization distortion compared to ex-
isting methods.

http://doi.acm.org/10.1145/2185520.2185605
http://portal.acm.org/ft_gateway.cfm?id=2185605&type=pdf


2 Related work

Our work builds on ideas from four sources: (1) feature-
aligned parametrization and quadrangulation, based on fitting
parametrization gradients to a field, primarily [Bommes et al.
2009], but also [Ray et al. 2006; Kälberer et al. 2007]; (2) as-
rigid-as-possible parametrization [Liu et al. 2008]; (3) conformal
parametrization/metric computation [Jin et al. 2004; Ben-Chen
et al. 2008; Springborn et al. 2008]; and (4) cross-field and N-
symmetry/rotational symmetry field and connection constructions
[Hertzmann and Zorin 2000; Palacios and Zhang 2007; Ray et al.
2008; Ray et al. 2009; Lai et al. 2009; Crane et al. 2010]. We dis-
cuss the relationship in Sections 5 and 6 in more detail.

We focus on the work offering automatic cone placement; broader
reviews of parametrization can be found in [Hormann et al. 2007;
Sheffer et al. 2006].

Many techniques based on the construction of a base domain using
simplification offer good control over the number of cones, and typ-
ically result in a relatively even distribution [Eck et al. 1995; Lee
et al. 1998; Khodakovsky et al. 2003; Marinov and Kobbelt 2005;
Daniels II et al. 2009; Daniels et al. 2009; Pietroni et al. 2009;
Tarini et al. 2010]. However, the distortion is often suboptimal for
the number of cones, and difficult to control. A number of methods
[Gu and Yau 2003; Dong et al. 2006; Tong et al. 2006; Ben-Chen
et al. 2008; Springborn et al. 2008] use global harmonic or confor-
mal parametrizations with cones; among these, [Dong et al. 2006]
and [Ben-Chen et al. 2008] and [Springborn et al. 2008] present au-
tomatic cone placement. The Morse complex constructed in [Dong
et al. 2006] is not directly tied to parametrization distortion. The
cone placement techniques of [Jin et al. 2004], [Ben-Chen et al.
2008] and [Springborn et al. 2008] follow a “top-down” approach,
going back to [Gu et al. 2002]: e.g. for disk topology, start with a
parameterization with no cones, and add cones in areas of maximal
distortion. This approach works well for placing a small number of
cones, but as the number grows, it become less reliable (Section 7).
[Jin et al. 2008; Lai et al. 2009] parameterize a surface by flattening
the metric by uniformization using Ricci flow, concentrating curva-
ture at user-specified cone locations. Our metric evolution produces
cone positions and curvatures automatically. [Sorkine et al. 2002]
introduces discontinuities into the texture map based on maintain-
ing bounds on distortion. Similarly to our work, the flattened areas
are grown in a greedy way so that the increase in distortion is min-
imized at each step.

3 Global parametrizations and metrics

In this section, we summarize definitions and basic properties of
global parametrizations and related cone metrics that we need to
explain our algorithm. Many of these facts appear in the literature
in different forms, cf. [Springborn et al. 2008; Ben-Chen et al.
2008; Lai et al. 2009].

A 3D mesh M can be cut to a topological disk Mc, by removing a
set of simple seam edge chains from the surface. Away from ver-
tices where several seam chains join, each seam point p corresponds
to two points p1 and p2 in Mc (Figure 2). A piecewise linear map
f from Mc to the plane is a global parametrization of the mesh. In
general, it depends on the choice of the seam, and the points of the
seam get two distinct parametric values. For a choice of coordinates
on each triangle the differential of f can be represented by a 2× 2
Jacobian matrix J(p).

A cone metric g on a mesh M is a metric with zero discrete Gaus-
sian curvature everywhere except at a set C of vertices (cones)
C = {ci} with cone angles αi > 0. In a neighborhood of a cone
point, the surface is isometric to a cone with cone angle αi with
respect to the metric g. The Gaussian curvature at the cone ci is the
delta function Kiδ(p− ci), with Ki = 2π − αi.

A global parametrization f defines a metric on the mesh with con-

stant metric tensor g = ∇fT∇f on each triangle; this metric is flat

p

p1

p2
180°f

Figure 2: Global parameterization. Each seam edge chain on the
surface (left) maps to two seam curves related by a rigid transfor-
mation on the parametric domain (middle and right) – in this case,
a rotation of 180◦ about the cone. A surface point p on a seam
maps to two points p1 and p2 on the domain related by the same
transformation.

away from the seam. We additionally require that the metric is flat
at all points of the seam, excluding the endpoints of the seam curve.
Flatness of metric on seam curves implies that two images of a seam
in the parametric domain are related by a rigid transformation (Fig-
ure 2). Conversely, a flat metric on M \ C, and a seam passing
through all points of C defines a parametrization f uniquely, up to
a composition with rigid transformations of the plane.

We are interested in a special type of global parametrization and
cone metric (a) which does not depend on the choice of seams (up to
rigid transformations), but only on the choice cone points; (b) and
whose isoparametric lines continue smoothly across seams. Con-
ditions for a parametrization to be seamless can be formulated in
terms of the corresponding metric.

If the metric is flat, two important facts follow from the Gauss-
Bonnet theorem:

Seamless parametrizations. We say that a parametrization f
is seamless if it has the following property: if fi is the linear
parametrization of a triangle Ti, then for each point p on the shared
edge of Ti and Tj , the differentials Ji and Jj of the maps fi and fj
acting on the common edge vector eij of Ti and Tj agree up to a
rotation rij by the seam rotation angle ωij = kijπ/2, where kij is
an integer (Figure 3):

Jjeij = rijJieij (1)

For edges not corresponding to seams, ωij = 0 and rij is the iden-
tity.

eij

Ti
Tj

fi
fj

rijq + tij

ωij = kijπ/2
tij unconstrained

quadrangulation

unconstrained

ωij = kijπ/2
tij integer

seamless

Figure 3: Unconstrained vs. seamless parametrization. Satisfy-
ing (1) across cuts results in a seamless parametrization. Addition-
ally rounding cone parametric positions and seam translations tij
makes it suitable for quadrangulation.

A quadrangulation additionally requires constraining translational
differences of parametric values across seams to be integer (Fig-
ure 3). Computing a sufficiently fine quadrangulation from a seam-
less parametrization by rounding translations does not significantly
change the distortion (cf. Figure 11). We thus restrict our attention
to seamless parametrizations, while noting that minimizing distor-
tion for very coarse mesh generation requires taking into account
distortion due to cone parametrization rounding.

An invariant definition for a seamless parametrization not relying
on the choice of a seam, but directly on the metric, can be given in



terms of holonomy angles. A metric g on the mesh can be defined as
an assignment of edge lengths, satisfying triangle inequality, from
which the angles of all triangles in the parametric domain can be
computed.

Consider, as in Figure 4, a closed chain γ of N triangles Tm of the
mesh, such that Tm and Tm+1 share an edge em,m+1, where m+1
is computed modulo N . Define a loop consisting of dual edges or-
thogonal to the mesh edges (in the flat metric g in Figure 4, middle),
and the discrete geodesic curvature at the endpoints of dual edges
equal to the signed angle between the normals of the dual-edge,
i.e. the angle between corresponding primal edges. The discrete
holonomy angle indicates how much the sum of triangle angles βm

between em−1,m and em,m+1, with signs dm = ±1 chosen de-
pending on the direction of rotation, deviates from the angle sum of
a closed loop in the parametric domain.

Ad
g(γ) = 2π −

N
∑

m=1

dmβm. (2)

The holonomy of the closed chain is the corresponding rotation.
This is a discrete version of the standard continuous definition of
holonomy by parallel transport of a unit vector around a loop. For a
counterclockwise loop around a vertex, the holonomy angle is just
the sum of angles at the vertex.

If the metric is flat, two important facts directly follow from the
discrete version of the Gauss-Bonnet theorem:

Proposition 1 (1) Any two homotopic chains in M \ C have the
same holonomy angle.
(2) For any counterclockwise chain γ encircling a single cone ci,

Ag(γ) = Ki.

As a consequence, the holonomy of a cone metric is completely de-
scribed by a finite set of values: it is sufficient to define the holon-
omy angles on a set of representatives γi of all homotopy classes of
loops on M \ C. This set can be chosen to include a set of homol-

ogy loops γh
i in M , and a single ring of triangles γc

i around each
cone ci. We call a cone metric g seamless, if for all γi,

Ag(γi) =
kiπ

2
, (3)

where ki is an integer.

Remark 1. A similar condition appeared in [Lai et al. 2009] where
turning numbers of an N -RoSy field are constrained to be a mul-

tiples of 2π
N

by similarly constraining the holonomy angles of the
related metric.

γ

Ag
d(γ) Tm –1

Tm

Tm+1

Tm+2

γ
βm

βm+1

βm–1

βm+2

Figure 4: Loop holonomy. A loop γ unfolded isometrically to a

plane with its holonomy angle Ad
g(γ). Within triangle Tm, the loop

γ turns an angle of βm, computed as the angle between adjacent
edges em−1,m and em,m+1 shown in blue. For interior edges like
the ones highlit in blue, ωm,m+1 = 0 and rm,m+1 is the identity.

Meanwhile, ωm,m+1 = Ad
g(γ) across the red seam edge at the

bottom and (4) holds.

The sum for the discrete holonomy angle of a loop can also be di-
rectly expressed in terms of the Jacobian matrices of the linear maps

fi as the sum of rotation angles ωm,m+1 between Jmem,m+1 and
Jm+1em,m+1 for all edges in a chain of triangles:

Ad
g(γ) =

N
∑

m=1

ωm,m+1. (4)

As a consequence, while individual rotations depend on the choice
of seams and maps fi, their sums along closed loops do not.

Recall that we assume that fi agree at non-seam edges, so ωm,m+1

is zero there with rm,m+1 being identity.

Proposition 2 A cone metric g is seamless if and only if any global
parametrization f with this metric g is seamless.

For a seamless parametrization, rotation angles ωm,m+1 on seam

edges, are uniquely determined by holonomy angles Ad
g(γi) for a

complete set of loops of triangles representing homotopy classes
in M \ C, and conversely, rotation angles on seam edges are de-
termined by the holonomy angles. The relationship between seam
rotation angles and holonomy angles is linear.

The proposition is proved in the appendix.

4 Overview of the method

As-rigid-as-possible energy for a metric. As our method aims to
minimize parametrization distortion, we need to choose a distortion
measure. We use the as-rigid-as-possible (ARAP) energy:

EARAP =
1

2

∑

T

min
R∈SO(2)

‖∇fT −R‖2AT (5)

where the summation is over all triangles of the mesh. As it is
shown in [Liu et al. 2008], the integrand can be expressed di-
rectly in terms of signed singular values σ1 and σ2 of ∇f , as

(σ1 − 1)2 + (σ2 − 1)2. If f preserves orientations, σ2
1 and σ2

2

are the singular values of the metric g = ∇fT∇f associated with
f . Assuming we choose local isometric coordinates on the surface
(e.g., an orthonormal coordinate system on each triangle), the initial
metric g0 = I , and

E(g0, g) =
1

2

∑

T

(σ1 − 1)2 + (σ2 − 1)2AT (6)

Ideally, we want to compute a metric g globally minimizing the dis-
tortion energy subject to the constraint (3), with unknown integers
ki, unknown number of cones and unknown cone positions ci. This
is a difficult problem: in Section 5 we discuss in more detail why
it is likely to be NP-hard. As a consequence, we design a heuris-
tic approach to find a low-distortion parametrization, and validate it
experimentally.

Our approach consists of three main steps.

(1) Flattening (Section 5) determines cone positions (but not an-
gles). This is done by a greedy approach, which starts from low-
curvature areas of the surface and gradually concentrates all curva-
ture at isolated cone points, continuously evolving the metric.

(2) Rounding sequentially rounds the angles for cones so that the
increase in the energy is minimized at each step. Holonomy con-
straints for homology loops are fixed by simultaneous rounding,
with possible additional optimization at the ARAP optimization
step.

(3) Global ARAP parametrization with fixed holonomy angles com-
pletes the process. We use a cross-field initialization for ARAP, for
a substantial speedup (Section 6).

Performing nonlinear optimization would be prohibitively expen-
sive for flattening and rounding, so we use a highly restricted class
of metrics (metrics conformally equivalent to g0) as a proxy for op-
timization over all possible metrics. For this class of metric, the op-
timization problem that needs to be solved at every step is quadratic



(Section 5). The conformal map metric distortion approximates the
minimum of the ARAP energy as long as the maps remain close to
isometric (Figure 5).

|φ| |φ| averaged minR∈SO(2) ‖Ji −R‖
per vertex per triangle per triangle

Figure 5: Comparison of curvature distortion measures. Even
with the majority of surface vertices constrained to be flat, the con-
formal distortion |φ| of the metric (introduced in Section 5) serves
as a good proxy for the ARAP distortion minR∈SO(2) ‖Ji − R‖
of the resulting parameterization. Distortion is visualized varying
from 0 (blue) to 0.5 (red).

5 Flattening and rounding

Both flattening and rounding perform a constrained minimization
of E(g0, g). Figure 7 shows the evolution of the metric distortion
during the flattening and rounding phase.

Flattening. Our goal is to define a new metric g, for which the
Gaussian curvature K[g] is zero almost everywhere, except at a
set of isolated cone candidates ci, which are assigned concen-
trated curvatures Ki. At the flattening stage we do not require
the metric to be seamless, and place no constraints on the holon-
omy angles. We start with areas of low curvature and gradually
increase the area where the curvature has to be zero, recomput-
ing the metric at every step. As the constrained areas are ex-
panded, the curvature concentrates in the unconstrained areas (Fig-
ure 6). Once only isolated points remain unconstrained, the pro-
cess stops. The flattening procedure can be summarized as fol-
lows:

1: Flattening
2: ǫ := ǫ0 {Initialize curvature threshold}
3: g := g0 {Initialize metric}
4: while M \ Ω contains non-isolated vertices do
5: Ω := set of all vertices p on M with discrete Gaussian cur-

vature K[g](p) < ǫ.
6: Compute new metric g, minimizing E(g0, g) with constraint

K[g] = Ki = 0 on Ω.
7: Increment ǫ.
8: end while

In its general form, the algorithm remains prohibitively expensive,
as it requires a constrained nonlinear energy optimization at each
step. For metrics conformally equivalent to the original metric, the
problem is considerably simplified: the metric tensor has the form

e2ϕI , where ϕ is a scalar function, and the energy needs to be opti-
mized with respect to a scalar function ϕ rather than a tensor g.

Even more significantly, the energy EARAP (g) can be approxi-
mated by a quadratic energy and the nonlinear constraint on K[g]
can be replaced by a linear constraint on ϕ (cf. [Jin et al. 2004;
Ben-Chen et al. 2008]). By using ϕ as our variables, we entirely
avoid computing the actual parametrization until the last stage of
the algorithm.

Indeed, observe that for a conformal metric e2ϕI and small scale

Figure 6: Curvature evolution: An example of curvature evolu-
tion during flattening. Flattened areas are in white; negative curva-
tures increase in magnitude from cyan to blue; positive curvatures
increase from yellow to red.

factors ϕ, the as-rigid-as-possible energy density is

1

2

(

(σ1 − 1)2 + (σ2 − 1)2
)

= (eϕ − 1)2 ≈ ϕ2

i.e. is quadratic in the scale factor ϕ. As Figure 5 illustrates, this
approximation serves as a good proxy even at the end of the flatten-
ing stage, when all but a few isolated vertices have been flattened.
Another well-known fact about conformal metrics is that if the orig-

inal metric has Gaussian curvature K0, and the new metric is flat
with cones angles αi = 2π−Ki at points ci, then ϕ in the smooth
case satisfies the Poisson equation

∆ϕ(p) =
∑

i

Kiδ(p− ci)−K0(p)

at every point p ∈ M (cf. [Bunin 2008]). We observe that this
makes constraints in the optimization procedure linear. We end
up with a significantly simpler problem in terms of the logarithmic
scale factor ϕ for redistributing the metric during the optimization
for flattening:

Minimize
∫

M
ϕ2dA with constraint ∆ϕ(p) = −K0(p) for p ∈ Ω.

Rounding. The metric g produced by the flattening algorithm, is
not seamless. At the second stage, we fix the cone position candi-
dates ci determined by flattening, and impose conditions on holon-
omy angles to make the parametrization seamless. We treat the
conditions for cones and homology loops separately. First, we find
the rounded curvatures Ki for the cones. Ideally, we need to min-
imize E(g0, g) with respect to g, so that K[g] is zero everywhere
except at cone candidates ci where it has concentrated curvature
Ki = kiπ/2, with ki unknown integers.

While in principle this problem can be solved by complete enumer-
ation if the range of rounded cone angles is restricted, the complex-
ity is too high even for a moderate number of candidates. Instead,
we again opt for a greedy procedure. As before, we iteratively fix
the cone angle closest to a target value (closest integer multiple of
π/2 in this case). Just as in the case of rounding, we stay within the
domain of conformal metrics, yielding the following procedure:

1: Rounding
2: Place all cone candidates ci on a priority queue, with

∣

∣Ki −
π
2
[2Ki/π]

∣

∣ as the key.
3: while priority queue not empty do
4: Remove the first cone p from the queue, and add it to the list

F of fixed cones.
5: Ki :=

π
2
[2Ki/π]

6: Recompute the metric g and the cone angles for cones 6∈
F by minimizing

∫

M
ϕ2dA subject to constraint ∆ϕ(p) =

∑

ci∈F Kiδ(p− ci)−K0(p) for all p ∈ F ∪ Ω.

7: end while

Rounding homology loop holonomy angles. The conformal flat-
tening and rounding stages produce only cone angles, not holonomy



angles for the homology loops.

Once the rounded cone values are fixed, the conformal metric g is
defined uniquely by the constraint ∆ϕ(p) =

∑

ci∈F Kiδ(p−ci)+

Ki(p), up to a scale factor that can be added to ϕ. This means that
there may be no conformal metric for which the holonomy angles
for homology loops are integer multiples of π/2 as needed for a
seamless metric, and the distortion can no longer be optimized by
solving a quadratic problem. Computing holonomy angles for the
conformal parametrization via (2) and rounding them to the nearest
kπ/2 value yields an initial approximation.

For low genus, the angles can be further optimized in a brute-force
manner by rounding each homology loop angle to each of the two
nearest holonomy angles and computing the full metric with each
rounded combination. However, in all of our experiments up to
genus 4, this resulted in the same rounded holonomies as direct
rounding.

Discretization. We use a standard linear finite element discretiza-
tion for the Poisson equation for ϕ, as in [Ben-Chen et al. 2008].

At each step of the flattening algorithm, the set Ω consists of ver-
tices where we impose zero curvature constraint. The metric g is
represented by vertex values φi, determined at each step by mini-

mizing
∑

i Aiϕ
2
i , where Ai is the vertex area, subject to the con-

straint
∑

j

Lijφj = −Kd
i (7)

for each flattened vertex i, where L is the standard Laplace matrix
with cotangent weights, φ is the vector of per-vertex values of ϕ and

where Kd
i is the integral curvature over the vertex area of vertex i.

The discrete curvature at a vertex i 6∈ Ω in metric g is compared
with threshold ǫK to decide if it should be included in Ω on the
next step.

In the rounding algorithm, each cone ci with rounded integral cur-
vature Ki = ki

π
2

contributes the additional constraint

∑

j

Lijφj = ki
π

2
−Kd

i (8)

Appendix A describes an efficient way to update the metric during
the iterative flattening and rounding procedures, which allows the
per-step metric to be recomputed efficiently.

Figure 7: Distortion evolution. Left to right: Initial surface with
no distortion; distortion after flattening stage; distortion during it-
erative rounding; final distortion with all vertices rounded. Distor-
tion varies from 0 (blue) to 0.5 (red) and is computed in triangle i
as minR∈SO(2) ‖Ji −R‖ after minimizing the ARAP energy (9).

Computational complexity. The discrete conformal formulation
provides further insight into the intrinsic complexity of the prob-
lem of finding optimal cone positions and rounded angles. If the
problem is restricted to the space of discrete conformal mappings,

it reduces to minimizing
∑

i Aiϕ
2
i , with constraint

∑

j Lijϕj =

πki/2 − Kd
i , for all i, and ki (unknown) integers, i.e. to a stan-

dard mixed-integer problem. Mixed-integer problems are known to
be NP-hard in general, and with no assumptions on the mesh con-
nectivity, it is unlikely that the complexity of the problem can be
reduced.

Comparison to related techniques. Our approach is motivated by
the ideas of the mixed-integer solver described in [Bommes et al.
2009]. When enforcing integer constraints in a greedy manner, the
solver proceeds by rounding variables already close to integers first,
gradually progressing to variables further away from integers. This
is the overall strategy we follow for curvatures.

Flattening. The flattening stage of our algorithm finds a conformal
flat cone metric minimizing isometric distortion, determining cone
positions and non-rounded angles. A related problem is solved in
[Springborn et al. 2008] and [Ben-Chen et al. 2008]. In both of
these papers, the starting point is a high-distortion conformal flat
metric with no cones for a surface of disk topology. Cones are
added in locations with highest distortion in a greedy way, decreas-
ing the distortion energy, until a desired number of cones is added,
or the distortion is below a threshold.

In contrast, our method starts with the original (non-flat) surface
metric, which can be regarded as having cones at all vertices, and
gradually expands the domain where vertices have zero curvature.
Starting a greedy optimization from a metric with low rather than
high distortion leads to lower distortion in the final map, for the
same number of cones (see Figure 12). In our case, there are no
stopping criteria, as the method naturally stops when all cone can-
didates are isolated. At the same time, if desired, we can control the
maximal number of cones by forcing zero curvature at candidate
cones until the number of cones is less than the desired number.
[Ben-Chen et al. 2008] uses a Markov process to distribute curva-
ture to the cones each time a cone is added, rather than directly
minimize a distortion energy to determine curvature. Similarly to
[Springborn et al. 2008], we use an energy directly. [Springborn
et al. 2008] uses the Dirichlet energy of φ to measure distortion

rather than the L2-norm of ‖φ‖. Due to its direct connection to
the ARAP energy, ‖φ‖ produces maps with a much lower fraction
of points with high area distortion. Our approach is more suitable
for surfaces of arbitrary topology, as it does not require an initial
cone-free map, which cannot be constructed for surfaces other than
disks.

We compare the performance of our algorithm against other meth-
ods for adding cone vertices to conformal maps in Section 7.

Rounding. In [Springborn et al. 2008], seamless parametrizations of
domains of disk topology are produced by simultaneous rounding
of all cones to the nearest multiple of π

2
. Compared to our more

expensive greedy strategy, this results in much higher distortion.
Another strategy in the context of a top-down method would be
to round each cone as it is added and update the metric. But this
produces worse results as after a few successful cone insertions,
new cones are consistently rounded to zero, preventing the addition
of more cones needed to reduce distortion. Seamless metrics are
not considered in [Ben-Chen et al. 2008], but using the rounding
strategies above with their cones still produced higher distortion
than our approach (cf. Section 7).

6 ARAP parametrization

At the last stage of our algorithm, we assume that all holonomy
angles are fixed, both for cones and homology loops. We no longer
restrict the parametrization to be conformal. Rather, we minimize
the ARAP energy over all possible metrics with given holonomy
angles.

6.1 Discrete ARAP energy for surfaces of arbitrary

genus

As we discussed in Section 3, holonomy angles uniquely determine
rotations at seams. Once rotations rij at all seam edges are fixed,
the ARAP energy of [Liu et al. 2008] naturally generalizes to arbi-
trary surfaces. We use a set of affine maps fi, one per triangle of
the cut mesh Mc, to define the energy. The maps are defined by
specifying values at vertices (multiple values at seam vertices, one
for each consecutive pair of seam curves).



The Jacobian Ji of each map can be used to define the energy per
triangle in the usual way:

EARAP
i = Ai min

R∈SO(2)
‖Ji −R‖2, (9)

with Ai denoting the triangle’s area, subject to the rotation con-
straint on the seam. If the seam edge eij is shared by triangles Ti,
then the constraint is Jj = rijJi where rij is the rotation by angle
ωij , which is 0 on non-seam edges and a multiple of π/2 across
seams in a seamless parameterization.

There are two known ways to optimize this energy: the local-global
method of [Liu et al. 2008], and the Newton procedure of [Chao
et al. 2010]. Both methods are iterative, and the behavior strongly
depends on the choice of the starting point. For surfaces of disk
topology, [Liu et al. 2008] and [Chao et al. 2010] use the LSCM
parametrization of [Lévy et al. 2002] as the starting point. How-
ever, an LSCM initialization results in a relatively large number of
iterations for both methods (Figure 14, top).

Instead, we start with rotations R, and compute the ini-
tial parametrization by minimizing the energy with fixed R:
∑

i Ai‖Ji−R‖2, i.e. performing the global step of the local-global
iteration. On subsequent steps either Newton or local-global iter-
ations can be used. As compared to an LSCM initialization, we
found a 3- to 6-fold decrease in the number of iterations needed for
iterations to converge as discussed in greater detail in Section 7.

To explain how a suitable initial rotation field is computed, we es-
tablish the relation between the rotations and cross-fields on the
surface, and seam rotation angles of the parametrization and the
rotation field.

6.2 Rotation field of a parametrization

We start with explaining the idea for smooth surfaces, as it is
simpler in the smooth case. For a given global parametriza-
tion f , we define the best-fit rotation field on Mc as R(J) =
argminR∈SO(2)‖J − R‖2 for J = ∇f . The columns of RT =

[q1,q2] define orthonormal vectors in the tangent plane of Mc. If
we fix a reference frame field b on the surface, R can be represented
by the angles θ between q1 and b, and the four angles θ + kπ/2,
k ∈ {0, 1, 2, 3}, correspond to ±qm, m ∈ {1, 2}. In this way, the
rotations R define a cross-field on Mc.

Conversely, if a cross-field has no singularities on Mc, which is a
topological disk, it can be split globally into four unit vector fields
qi(p), i ∈ {1, 2, 3, 4}. These vector fields are not continuous
across the seam. If p1 and p2 are two points of Mc corresponding
to a point p on the seam, then the angle between qi(p1) and qi(p2)
is of the form kπ/2 for an integer k. We call this angle a seam rota-
tion angle of the field and it is constant along each seam curve by the
continuity of the vector field on each side. The integer k is called
matching (cf. [Ray et al. 2008]). If we define the rotation field by

two orthogonal vector fields q1 and q2, so that RT = [q1,q2], then
R(p2) = rR(p1) at a seam point p. This observation leads to the
following proposition, proved in the Appendix.

Proposition 3 For an orientation-preserving parametrization, the
seam rotation r(p) of the cross-field defined by R(J) at a seam
point p coincides with the seam rotation of J .

Initializing rotations using cross-field optimization. Although
we do not know J , the flattening and rounding stage of the algo-
rithm yields all holonomy angles, and therefore also the seam ro-
tation angles. Proposition 3 suggests initializing the local-global
iteration using a smooth cross-field with seam rotation angles con-
strained to be equal to the one obtained from holonomy angles.

We represent the discrete cross-field on each triangle Ti by an angle
θi with respect to a frame bi fixed per-triangle. In addition, seam
rotation angles ωij = kijπ/2 are specified on seam edges eij and
are presumed to be zero in the interior. With κij being the angle

θj
θi

ωij = π/2
seam

κij
bjbi

Figure 8: Cross-field representation. The angle-based cross-field

representation can be transported from facet i to j as θi+κij+ωC
ij

for direct comparison with θj , where κij is the difference in angle
between the per-triangle reference frames bi and bj .

between bi and bj (Figure 8), we minimize the quadratic energy

min
θ

∑

ij

(θi − θj + κij + ωij)
2. (10)

The minimizer is unique if θi is fixed for one triangle. The same
energy is used in [Ray et al. 2008; Bommes et al. 2009] and is
equivalent to the energy used in [Crane et al. 2010]. Once the angles
θi are computed, they are converted to rotation matrices

Ri =

[

bi

|bi|
cos θ,

b⊥
i

|bi|
sin θ

]T

(11)

used to initialize the local-global iteration.

Remark 2. We note that Proposition 3 can be also formulated in
terms of the turning numbers of the cross-field (which can be ex-
pressed in terms of holonomy angles of the metric) [Lai et al. 2009],
as well as in terms of holonomy angles of the principal connection
associated with the cross-field [Crane et al. 2010]. We use the less
invariant notion of seam rotations as it yields an algorithm for com-
puting an initial field more directly.

Remark 3. Algorithms of [Bommes et al. 2009] and [Kälberer
et al. 2007] construct their parametrizations starting with a cross-
field, which is optimized to follow feature lines. The directions of
the cross-field are used as target directions for the parametrization
gradients minimizing the energy

Efeature =
∑

i

Ai

(

‖∇u− ui‖
2 + ‖∇v − vi‖

2)
(12)

We observe that [∇u∇v]T is exactly the Jacobian matrix of the

parametrization of a triangle, and [uv]T is a rotation matrix. Per

triangle, the energy has the form ‖Ji − Ri‖
2, i.e. the energy mini-

mized at the global step of the ARAP iteration.

6.3 Final algorithm

To summarize, our algorithm proceeds as follows:

1. Cone angles (ki): Given an input surface M , perform the
Flattening and Rounding subalgorithms listed in Section 5.

(a) Flattening: Iteratively evolve the surface metric by flat-
tening all points whose curvatures lie within an incre-
menting threshold ǫ. The logarithmic metric scaling
factor ϕ discretized using vertex values φi is evolved
by constraining every flattened vertex i by

∑

j

Lijφj = Ki −Kd
i

with Ki = 0 and minimizing the distortion
∫

M
ϕ2dA.

Flattening completes once all curvatures are concen-
trated at isolated vertices which serve as cone candi-
dates for the Rounding phase.

(b) Rounding: Continue evolving the metric by iteratively
rounding the curvatures of cone candidates, prioritizing
those that are closer to multiples of π/2, until there are



no more vertices remaining. Each cone ci with curva-
ture rounded to Ki = kiπ/2 contributes an additional
constraint on φ as in the flattening stage, but with a non-
zero curvature.

This yields for each vertex i on the surface an integral curva-

ture Ki which is used to constrain the holonomy Ad
g(γ

c
i ) =

Ki of loops γc
i around each vertex i.

2. Holonomy angles for homology loops: (Section 5) Compute

rotation angles Ad
g(γ

h
i ) for a homology basis via (2) using the

new metric, and round these angles to multiples of π/2.

3. Seam rotation angles ωij: (Section 3, Proposition 2) Given
all holonomy angles from steps 1 and 2, solve for the unique
compatible ωij , constrained by (4). Note that ωij = 0 along
non-seam edges.

4. Initial Ri for ARAP: (Section 6.2) Compute θi from ωij by
minimizing (10). Compute Ri from θi via (11).

5. ARAP: (Section 6.1) With ωij fixed, and initial per-triangle
rotations Ri specified, initialize f = (u, v) by minimizing

Efeature (12). From this initialization, the ARAP energy can be
minimized using either

• the local-global iterations of [Liu et al. 2008], or

• the Newton method of [Chao et al. 2010].

Either approach yields a final global parameterization f .

7 Results and Discussion

We evaluate the results of our algorithm in several ways. The over-
all algorithm is compared to recent parametrization methods opti-
mizing isometry. As the flattening and rounding stages use confor-
mal parametrizations as proxies for the actual parametrization, we
compare the results of this stage with previously proposed tech-
niques for adding cones to conformal parametrizations. For the
global ARAP parametrization, we compare initialization following
[Liu et al. 2008], with our rotation field initialization, and demon-
strate a 6-fold speedup for the Newton method, and a 3-fold de-
crease in the number of local-global iterations to reach within 1%
of the final energy. We explore the dependence of the results on the
main parameter of the method (curvature threshold increment), and
discuss the limitations at the end.

In all cases, other than the area distortion in Figure 9, left, the dis-
tortion visualized in the figures in this section is computed on each
triangle i as the ARAP deviation from isometry minR∈SO(2) ‖Ji−
R‖.

Comparison with methods optimizing isometry. There are
relatively few global parametrization methods directly optimiz-
ing a measure of deviation from isometry. The almost-isometric
parametrization algorithm of [Pietroni et al. 2009] uses a com-
pletely different approach to global parametrization, based on con-
structing a domain by mesh simplification, following [Eck et al.
1995; Lee et al. 1998; Khodakovsky et al. 2003]. The method
optimizes a combination of quality factors different from ours, so
comparisons on our metric may be somewhat misleading (Figure 9,
right). While our method clearly outperforms that method in terms
of overall distortion, the area error distribution is more concentrated
at singularities for our approach.

While [Bommes et al. 2009] does not state isometry optimiza-
tion as its goal, as we have shown in Section 6, it is very close
to a global version of ARAP parametrization we propose. It is
not surprising that in terms of isometric distortion it outperforms
global parametrization methods based on conformal and harmonic
parametrization. Its isometric distortion is qualitatively similar to
the related methods of [Ray et al. 2006] and [Kälberer et al. 2007],
so we focus on comparisons with this method.

The distortion reduction compared to [Bommes et al. 2009] is due
to two factors: the choice of cone positions and angles, and as-

Figure 9: Upper row: (left) The almost-isometric parametrization
of [Pietroni et al. 2009] minimizes the area distortion of large tri-
angular patches, but (right) deviates highly from isometry. Lower
row: Our method performs well on both measures. Area scale color
varies logarithmically from scale 1/2 (blue) to 2 (red). The isomet-
ric distortion varies from 0 (blue) to 0.5 (red).

Figure 10: Distortion reduction due to ARAP. Left: Parametriza-
tion of [Bommes et al. 2009]. Right: Global ARAP parametrization
initialized with the same cones. The isometric distortion varies from
0 (blue) to 0.5 (red).

rigid-as-possible parametrization for fixed cones. Figure 10 com-
pares the behavior of the mixed-integer parametrization and ARAP
parametrization with the same cones, showing a significantly lower
distortion. However, most of the distortion reduction is due to cone
placement. To isolate the effects of cone placement, rather than
comparing to the mixed-integer parametrization in pure form, we
apply our ARAP optimization to the cones produced by [Bommes
et al. 2009].

Figure 17 shows a comparison of the distributions of distortion on
a number of models. We observe that we obtain an improvement in
all instances. Further details on the models are listed in Table 1.

Figure 11 compares a quadrangulation generated from ARAP
parametrizations on Mixed Integer fields and ours, obtained after
rounding seam translations and cone parametric coordinates. The
visualized distortion minR∈SO(2) ‖J − R‖ is computed by inter-
preting each quad as a bilinear map from a unit quad and evaluating
the Jacobian at the center.

MI-ARAP
Iterative

Flattening

Figure 11: Comparison of quadrangulations from ARAP with
Mixed Integer fields and our method. Nearby cones were automati-
cally collapsed for both methods and cone positions were rounded.
The distortion visualization is scaled from 0 (red) to 0.5 (blue).



faces NMI Nfinal Tflat Trnd DMI Dfinal

Fandisk 14454 29 28 6.52 6.03 0.161 0.0829

Dancer 49996 71 87 20.9 64.5 0.216 0.106

Elephant 49918 133 118 22.4 95.7 0.197 0.113

Screwdriver 54300 20 26 33.1 40.4 0.244 0.095

Hand 65524 42 35 36.4 43.4 0.223 0.0757

Botijo 82332 80 89 74.6 188 0.245 0.0890

Horse 96966 111 70 63.4 211 0.234 0.105

Omotondo 100000 98 68 90.4 301 0.192 0.095

Bunny 111364 36 44 91.1 133 0.248 0.0844

Table 1: Column titles: NMI and Nfinal are, respectively, the num-
ber of cones in the MI field, and our parametrization after cone
collapse; the Ncand column denotes the number of cone candidates;
Tflat and Trnd are the run times, in seconds, of the flattening and
rounding procedures, respectively; DMI and Dfinal denote, respec-
tively, the average triangle distortions of the MI-ARAP procedure
and on our final model.

(a) 36 cones (b) 35 cones (c) 36 cones

Iter. Flattening Bommes [2009] Ben-Chen [2008]

(d) 16 ins./rnd. (e) 30 then round (f) 33 then round (g) 35 then round

[Springborn et al. 2008]

Figure 12: Conformal insertion methods. (a) Iterative flattening
(b) Mixed Integer [Bommes et al. 2009] (c) the cone insertion [Ben-
Chen et al. 2008] with cone curvatures rounded at the end. [Spring-
born et al. 2008]: (d) iterative cone insertion of [Springborn et al.
2008] (e–g) simultaneous cone insertion followed by rounding all
at once. In all cases, ARAP parameterization was computed using
the prescribed cones, and the scale is 0 (red) to 0.5 (blue).

Comparison with cone insertion methods for conformal maps.
A related problem, addressed by [Springborn et al. 2008; Ben-Chen
et al. 2008], minimizes the metric distortion while allowing no more
than k cones with arbitrary cone angles. The greedy procedure
suggested by both methods starts with a conformally flattened sur-
face and iteratively inserts cone singularities at vertices of maximal
|φ|. Springborn et al. [2008] suggest two ways to round cone cur-
vatures: inserting and rounding cones in sequence, or inserting a
fixed number of cones and rounding them all at once. In the exam-
ple of Figure 12(d), the former method stops at 16 cones – far too
few to lower distortion – before rounding the curvatures of subse-
quent cones to 0. The latter, trial-and-error approach of guessing
either the termination threshold of [Ben-Chen et al. 2008] or the
the number of cones to insert with [Springborn et al. 2008] (Fig-
ure 12(c,e–g)) gives better results but is cumbersome and still yields
a greater energy than the cones of [Bommes et al. 2009] and our it-
erative flattening approach shown in Figure 12(a,b). The maximal-
φ-difference termination threshold [Ben-Chen et al. 2008] of 0.9
was used for Figure 12(c) so that four cones were produced on ev-
ery finger.

Figure 13: Left and middle: local maxima on successively
smoothed curvature yield many randomly-placed cone candidates;
Right: our iterative flattening procedure concentrates curvature in
more meaningful locations.

LSCM
init. vs iter.

Cross-field
init. vs iter.

Cross-field
init. vs time

Figure 14: Convergence of Newton vs local-global iterations.
Initialization with LSCM yields slower convergence for both proce-
dures as compared to the cross-field-based initialization proposed
in Section 6. Newton converges to high accuracy in far fewer itera-
tions than the local-global procedure (middle row), but at a greater
computational cost per iteration (bottom row).

Cones at local curvature extrema. We observe that in simple
cases, incremental flattening is likely to push curvature to existing
curvature extrema. For completeness, we compare to the algorithm
of placing cone candidates at the extrema of Gaussian curvature,
suggested in [Tong et al. 2006]. Figure 13 shows the results of this
approach for two levels of smoothing of Gaussian curvature.

Rotation field vs. harmonic field initialization of ARAP. An al-
ternative to using local-global iterations is to use a Newton solver,
which was shown to exhibit much faster convergence [Chao et al.
2010]. As an example, Figure 14 illustrates the convergence rates
of the solution and the energy of both procedures on a Julius head
model with 10K triangles and 15 cones produced by our flatten pro-
cedure. We compare the Newton and the local-global solvers with
different initializations: an LSCM parameterization [Lévy et al.
2002], and a global step from the cross-field Ri in Section 6. As
Figure 14, top, shows, LSCM is a poorer initializer for both pro-
cedures, especially Newton. In contrast, 10 local-global iterations
from the cross-field initialization decrease the energy to within 1%
of the minimum, which may be sufficient for some applications.

While the Newton solver initialized by the method of Section 6
seems the clear winner in terms of the number of iterations, the
cost per iteration is very high. The time is dominated by the con-
jugate gradient iterations used to solve for the step size from the
Hessian and the gradient; the procedure requires nearly 10 sec-
onds for the 7 Newton iterations in this example. In contrast, the
matrix of the global step remains unchanged throughout the local-



global procedure. The overall cost is thus dominated by a one-time
Cholesky factorization of the matrix (0.654 seconds) and a much
cheaper back-substitution (0.044 seconds) per iteration. Thus, 200
local-global can be performed in the same time as the 7 Newton
iterations above. Depending on the application, just 10 local-global
iterations may suffice, requiring less than a second in this example.
Both algorithms were implemented in Matlab for a fair comparison.

Dependence on the rate of increase in curvature threshold.
Next, we consider the dependence of the result on the rate of in-
crease in the curvature threshold, determining how far the domain
expands at each step of the flattening stage. Figure 15 shows that
the dependence is moderate for a broad range of values. However,
choosing a very large threshold increment flattens the surface too
aggressively on fine meshes where the angle deficit around a vertex
is low in the initial metric.

Limitations. An important limitation of our method is that it is
ignoring mesh features. We make no attempt to align the isopara-
metric lines with high-curvature or sharp regions as it is done in
[Bommes et al. 2009], or to adapt the surface metric to features as
in [Kovacs et al. 2011]. The latter is straightforward, as it only re-
quires assigning different edge lengths, while the first limitation is
more fundamental, and requires substantial changes in our frame-
work. As Figure 16 shows, while our iterative flattening approach
produces lower distortion than mixed integer fields, it does not sup-
port feature alignment, which we leave for future work.

For quadrangulation, in addition to the holonomy constraints we
describe, it is essential to ensure that cone parametric coordinates
and seam translations are integers (Figure 3). Our distortion mini-
mization procedure does not account for this constraint. However,
if the quadrangulation is sufficiently fine as on the Bunny in Fig-
ure 11, the distortion of the quadrangulation with the required addi-
tional integer constraints does not deviate from the distortion of the
original parameterization. For applications like generating coarse
subdivision control meshes, very coarse rounding of cones posi-
tions and seam translations is clearly desired and additional effort
is required to integrate this rounding into the process. We note that
for rectangular texture atlases, multi-chart geometry images [Carr
et al. 2006], and T-mesh constructions [Myles et al. 2010], rounding
is not essential or rounding by small distances is sufficient.

π
20

π
200

π
2000

Figure 15: Choice of threshold increment: Left: Too large an
increment flattens far too many vertices, especially on fine meshes
where the integrated curvature (angle deficit) around a vertex is
small in the initial metric. Right: Too small an increment can be
unnecessarily expensive, taking about 3.5 minutes for flattening in
this example. Middle: π

200
, taking about 40 seconds, serves as a

good compromise.

A Incremental solution for φ

With the φ denoting the vector of all φi, we minimize

φtDφ = ||D1/2φ||2 constrained by Cφ = d,

where D is the matrix with vertex areas Ai on the diagonal, and C
and d enumerate those constraints (7) and (8) where ki are fixed.
The pseudoinverse yields a direct formula

φ = D−1Ct(CD−1Ct)−1d, (13)

which can be computed by solving (CD−1Ct)y = d for the vector

y using a Cholesky factorization and evaluating φ = D−1Cty.

Feature-aligned
MI-ARAP

MI-ARAP
Iterative

Flattening

Figure 16: Comparison to feature-aligned mixed-integer
parametrization. While iterative flattening exhibits far less distor-
tion, it is not yet sensitive to features, which is left for future work.
The distortion visualization is scaled from 0 (red) to 0.5 (blue).

As more curvatures are fixed, the number of rows of the Laplacian
matrix C increases, which is not amenable to utilizing an incre-
mental Cholesky factor update [Chen et al. 2008]. Therefore, we

pre-compute the matrix B = LD−1Lt, where L is the Laplacian
matrix of the complete mesh. With NVi

denoting the number of

interior vertices, we define the NVi
× NVi

matrix B̃ and the NVi
-

vector d̃ as

B̃ij =

{

Bij if ki and kj fixed
δij otherwise

d̃i =

{

π
2
ki −Ad

i if ki fixed
0 otherwise

where δij is the Krönecker delta function. Then, φ may be com-
puted with

ỹ = B̃−1d̃, φ = (D−1Lt)ỹ.

This system is conducive to incremental Cholesky factor updates

since B̃ is symmetric positive-definite and has constant size.

B Proofs of propositions

Proposition 2. Suppose a parametrization f has a seamless metric,
and let Mc be the cut mesh. Construct a dual spanning tree T of
triangles of the mesh with edges in the interior of Mc. Consider
a seam edge e and two triangles incident at the edge. For each of
the two triangles, there is a path to the root of the tree consisting of
edges dual to interior edges Mc, As all seam rotation angles are zero
at the interior edges of Mc, the only nonzero rotation angle on the
loop formed by the two paths and the edge ẽ dual to e is the angle
on e. By (4), this angle is equal to the homology angle of the loop.
The loop can be represented as a combination of homology basis
loops, which, by assumption, have rotation angles kπ/2, where k
is integer, so we conclude that all seam rotation angles are of the
same form.

Conversely, suppose the parametrization is seamless, i.e. all seam
rotation angles are kπ/2. We can find a homology basis of the
same structure (two paths to the root of the spanning tree and a
single additional edge [Erickson and Whittlesey 2005]); as there is
only a single nonzero rotation angle on the edge, we conclude that
the homology angle of the loop is equal to these rotation angles.

Note that the spanning tree construction defines a linear system re-
lating two sets of variables (holonomy angles of a metric and seam
rotation angles), and each set defines the other set uniquely. We
note that effectively this is the same relation as the one described in
[Ray et al. 2006] for turning numbers and matchings of a discrete
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Figure 17: Distortion comparison: Distortion coloring and histograms show that ARAP on cross-fields generated by the Mixed Integer
algorithm (MI-ARAP) yields higher distortion than ARAP on the Iterative Flattening procedure. For the flattening procedure, we show the
distortion both before and after the homology loops are rounded. The percentage accompanying the histogram indicates the fraction of
triangles with distortion less than 0.2. The distortion is visualized from 0 (blue) to 0.4 (red).



N -symmetry field, and the zippering algorithm described in [Ray
et al. 2006] can be viewed as a way to solve this linear system for
rotation angles.

Proposition 3. Suppose points p1 and p2 of the boundary of Mc

correspond to the seam point p, and suppose J1 = J(p1) =
rJ(p2) = rJ2, where r is a kπ/2 rotation. R(J) can be expressed

analytically as a function of J : Let Bi = Ji − JT
i + (Tr Ji)I .

Then R(Ji) = Bi/ detBi. detB = 0 if and only if J is a sim-
ilarity transformation combined with axial reflection, which is not
possible if J is orientation-preserving. Then R(J1) = rR(J2) is
easily verified, by a direct calculation, for the four possible rotation
matrices r.
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