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Abstract

Quadrangulation methods aim to approximate surfaces by semi-regular meshes with

as few extraordinary vertices as possible. A number of techniques use the harmonic

parameterization to keep quads close to squares, or fit parametrization gradients to

align quads to features. Both types of techniques create near-isotropic quads; feature-

aligned quadrangulation algorithms reduce the remeshing error by aligning isotropic

quads with principal curvature directions. A complementary approach is to allow for

anisotropic elements, which are well-known to have significantly better approximation

quality.

In this work we present a simple and efficient technique to add curvature-dependent

anisotropy to harmonic and feature-aligned parameterization and improve the approxi-

mation error of the quadrangulations. We use a metric derived from the shape operator

which results in a more uniform error distribution, decreasing the error near features.

Keywords: parameterization, quadrangulation, remeshing, conformal

parameterization

1. Introduction

Most common techniques for generating meshes from range scans and volumetric data

produce irregular meshes with complex connectivity. A surface can be stored in a

much more compact form, simplifying and speeding up rendering and processing if it

is converted to a predominantly regular mesh, with only a small number of irregular

vertices and faces. It is desirable to minimize the number of vertices in the semiregular

mesh, while keeping it close to the original mesh.

Recent quadrangulation algorithms use a global parameterization of a mesh; the new

mesh is obtained using a regular sampling pattern in the plane. Quite often, the para-

meterization is optimized to be as isometric possible. However, isometric parameteri-

zations may be far from optimal for surface remeshing, if the goal is to obtain a surface
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as close as possible to the original for a given number of faces. For example, a cylinder

can be mapped isometrically to the plane, resulting in a uniform sampling pattern on

the surface. It can, however, also be meshed with single long quads stretched along the

axial direction, with the same approximation error. We call quadrangulations that adapt

the quad aspect ratio to the surface shape anisotropic. We present a simple and robust

method for computing anisotropic quadrangulations with quad aspect ratios adapted to

local curvature, obtaining a good surface approximation with fewer quads.

Our method utilizes a curvature-based surface metric and computes the parameteriza-

tion using this metric, rather than the Euclidean metric. Our approach is compatible

with most parameterization methods that only rely on intrinsic quantities and vector

fields on the surface.

Defining a metric for meshes is conceptually simple: we assign a new length to each

edge. However, each edge length has to satisfy local triangle inequality constraints.

It is a surprisingly difficult task to ensure that no inequality is violated, and while

it may still be possible to compute a parameterization, the results may not have the

desired anisotropic behavior (Section 5). We solve this problem using the idea of a

high-dimensional embedding [23, 5]: the Euclidean metric in the higher-dimensional

space defines the new edge lengths for the mesh. The embedded vertex coordinates

consist of the original positional and normal coordinates, making the new edge length

computation straightforward.

original anisotropicisotropic

Figure 1: Quadrangulations of a lion head model. Left: the original model; middle: isotropic feature-aligned

quadrangulation (25% reduced) right: anisotropic feature-aligned quadrangulation
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2. Related work

The literature on parameterization, remeshing and quadrangulation is vast; [23], [5]

and [11] are the most closely related to our work. Our key observation is that the high-

dimensional embedding proposed in [5] to obtain anisotropic quadrangulations with

the quad aspect ratio determined by the ratio of principal curvatures can be applied

in the context of a particular class of parameterization techniques, and yields robust

results while preserving fine surface features.

There are many related works considering optimal anisotropic meshes in function ap-

proximation context (some recent work includes [1] [6] and [21]). Starting from [11],

anisotropic mesh generation is often based on defining a suitable metric for the desired

approximation measure, so that the isotropic triangulatulation in this metric results in

optimal approximation. Our approach can be viewed as an application of the same

general idea to the surface quadrangulation problem for a particular choice of error

measure.

Many recent quadrangulation methods (in contrast to the work based on the construc-

tion of base complexes by simplification [14, 20, 19, 10]) have similar structure: a

global parameterization is obtained by solving equations for gradients of parametric

functions, and a new mesh is generated by following parametric lines. The two main

categories of methods of this type are harmonic and feature-aligned.

Harmonic and conformal methods (for brevity we will we refer to both as harmonic)

are robust, efficient and typically produce good results even for complex meshes for a

suitable choice of singularities and boundary conditions. Some quadrangulation meth-

ods use harmonic maps directly [12, 32]. These methods can be viewed as minimizing

nonconformality of the map, while allowing significant area scaling; nonlinear meth-

ods such as [28, 30] are needed to guarantee a one-to-one parameterization. Extreme

area distortion is reduced by adding singularities (or “cones”) to the parameterization,

with several methods for automatic placement of singularities proposed in [12, 2, 30].

These techniques allow explicit user control over the number of irregular points on the

mesh. The downside of harmonic techniques, especially in the context of remeshing,

is that non-intrinsic shape information is not used directly.

aligned

anisotropic anisotropic+

aligned

isotropic

unaligned

Figure 2: Quad alignment and

anisotropy

The shape information can be taken into account in two dis-

tinct ways to minimize the approximation error. Locally, a

smooth shape can be characterized by its shape operator.

Figure 2 show two ways of taking the shape operator into

account (with principal curvature directions scaled by in-

verse principal curvatures shown in red).

A “perfect” quad of a given area approximating a surface

is aligned, i.e., has edges parallel to principal curvature

directions and anisotropic i.e., has aspect ratio inversely

proportional to the ratio of principal curvatures. This cor-

responds to two classes of feature-aware parameterization

techniques.
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Feature-alignment methods [25, 17, 3] adapt the parame-

terization to the shape by aligning new mesh elements with a feature field, typically

derived from the principal curvature direction field, either by smoothing, or interpo-

lation of salient features. The singularities of the parameterization are determined by

the singularities of the field, so the feature field cannot match the actual curvature field

too closely: substantial smoothing is needed to keep the number of singularities small.

The shape of the quads generated by these techniques tends to be uniform, rather than

anisotropic: one can view these techniques as minimizing non-isometry, while aligning

with the feature field. [3] permits a degree of anisotropy, penalizing changes in length

less than changes in the direction, but without relating these to curvature.

In geometric modeling, anisotropic parameterization was introduced as signal-specialized

parameterization [27, 31]. This work uses a metric derived from the Hessian of the sig-

nal to adapt the parameterization to a signal defined on the surface; in particular, the

surface itself can be used as the signal. Zayer et al. [35, 33, 34] describe a general

class of parameterization methods based on solving a generalized Laplace or Poisson

equation using a tensor field, which can be interpreted as a metric tensor. An elegant

formulation for related quasi-conformal maps based on Beltrami factors described in

[36]. The interpolation and stiffness properties of anisotropic linear triangles in finite-

element context are discussed in detail in [29].

[7] derives bounds on the Haussdorf-distance approximation of manifolds using a met-

ric closely related to the one that we use.

We show how to use a metric defined on a surface to obtain anisotropic versions of

global quadrangulation algorithms, both harmonic and feature-aligned, and demon-

strate the improvements in surface approximation that can be obtained in this way. To

the best of our knowledge, metric-based techniques were not yet applied to quadran-

gulation, although [32] suggests that this is possible by altering the Laplace equation

coefficients without suggesting a specific way to compute the metric.

We emphasize that we view using anisotropic metric as complementary to curvature-

alignment approaches, rather than alternative to these. Curvature-alignment methods

allow to obtain a geometrically meaningful set of singularities and coarse alignment

with the shape; anisotropy helps to resolve sharp features locally with fewer vertices,

and allows to keep the number of parameterization singularities low.

3. Anisotropic metric

The main idea of our approach is to define a new metric (that is, new edge lengths)

on a mesh, and use an isometry-approximating parameterization based on these edge

lengths for quadrangulation. The discrete metric is given by Equation (12). Our goal in

this section is to explain the motivation for this choice. First, we discuss the local error

and the choice of the best approximating quad; under the assumptions that we make,

and similarly to previous work, the optimal quad is aligned with principal curvature

directions, and has aspect ratio proportional to the ratio of principal curvatures.
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Second, we discuss how local errors can be combined together to obtain equations for

the parameterization of the whole surface. We show that isometry in the shape-operator

corresponds to optimal equidistributed error.

Definitions. Important local properties of a parameterization are captured by the metric

tensor. Suppose a surface A is defined by a function f : R2 → A ⊂ R3 (Figure 3).

A

P
Q

parametric plane

f g

Figure 3: Notation

A surface parameterization is the inverse map from the surface

to the plane g : A → R2. In our exposition, it is convenient

to fix a surface point p and the tangent plane P at this point.

We assume that an orthonormal coordinate system is fixed in

the tangent plane. Unless otherwise noted, all tangent vectors

are expressed in this coordinate system. We denote the 2 three-

dimensional coordinate vectors of this system D = [d1,d2].
Then a two-dimensional vector v in the coordinate plane corre-

sponds to three-dimensional vector w = Dv, and conversely,

v = DTw. The differential ∇f is a linear map from the para-

metric plane to P .

∇f defines the metric tensor in the parametric plane representing the metric of the sur-

face. The dot product of two vectors in the parametric plane is given by the Euclidean

dot product in the tangent plane P :

〈u,v〉f := (∇fu,∇fv)P = uT (∇f)T∇fv (1)

i.e. the metric tensor is given by the 2× 2 symmetric matrix

M(f) = (∇f)T∇f (2)

For a vector v = q2−q1 in the parametric domain defined by a pair of close points q1

and q2, the quadratic form vTM(f)v is, in the limit, the squared length of the image

of v: |f(q2)− f(q1)|
2.

3.1. Normal approximation error

The local normal approximation error measure (e.g. [8]) is similar to the gradient error

measure in finite elements [11]. This error corresponds more closely to the perceived

visual quality of an approximation, compared to, for example, the distance between

points on the surface. For the purposes of defining a pointwise error, we consider

an idealized setting: (1) The surface has well-defined curvature, with nonvanishing

Gaussian curvature. (2) For a parameterization g, we consider the approximation of

the surface by a collection of small quads. Each quad Q is a parallelogram obtained by

mapping a square Qp of edge length h from a regular grid in the plane to the tangent

plane of the surface at a point g−1(c) = f(c), using ∇f . (3) We assume the surface to

be well-approximated by a quadratic function over the tangent plane over each quad.

We define the error for a quad Q in the tangent plane P with normal nQ as the square

of the average of the deviation of the normal on the part of the surface A(Q) projected

to the quad Q along nQ.
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E2
Q =

1

Area(Q)

∫

A(Q)

‖nS(q)− nQ‖
2dq (3)

Next, we show how in the limit of small quads this error measure is related to the shape

operator. Let (u, v) be local coordinates in the parametric plane centered at a point

g(p0), corresponding to p0 on the surface. The linear approximation to the surface

normal over A(Q) is n0 + D∇np, where p is the vector in the parametric plane in

(u, v) coordinates. The ∇n is the differential of the unit normal n = n(u, v); as any

directional derivative of the unit normal is perpendicular to it, it is in the tangent plane,

so we assume ∇n expressed in the tangent plane coordinates D. Let n0 be the normal

at p0; we assume that quad Q is tangent to the surface at p0, i.e. n0 = nQ. We

express the shape operator S as a 2× 2 matrix mapping vectors in the parametric plane

to vectors in the tangent plane, in D coordinates. By definition of the shape operator,

S∇f = −∇n. We rewrite the expression for the normal as n0 − DS∇fp. Then the

pointwise squared error is given by

E2
pt = (n− n0)

2 = pT∇fTSTS∇fp (4)

where we used frame orthonormality DTD = I to eliminate D.

We assume that the surface is tangent to the quad at the center, (we need to expand the

quad in two directions to make this true for an arbitrary tangent point), integrating Ept

over the quad Q in the tangent plane, we obtain

E2
Q =

1

Area(Q)

∫

Q

(n− n0)
2 det∇f dudv

=
h4

12
Tr(∇fTSTS∇f) =

h4

12
Tr(STS∇f∇fT )

=
h4

12
Tr(S2M(g)−1),

(5)

where we use det∇f = Area(Q) and ∇f = ∇g−1.

We conclude that

E2
Q =

h4

12
Tr

(

S2M(g)−1
)

, (6)

approximates the integral of previously defined quad error up to O(h5) for each quad.

EQ is highly similar to the gradient interpolation error for linear elements [29], yet

there is an important distinction. As discussed in [29, 4], that error has a strong depen-

dence on the shape of the element in the physical space (in our case, the shape of the

approximating quad).

Specifically, if a square is mapped to the tangent plane using a map f with metric S−2,

and the edges of the quad form a large angle in the tangent plane, the error, instead

of being independent of curvature as suggested by (6) and (8) may be of order ah2,
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where a is the ratio of max to min curvature; so the error distribution over the surface

is clearly nonuniform. The fact that the quads we consider are tangent to the surface

changes this behavior. However, in this work we are primarily concerned with the

case when arbitrary anisotropy is not allowed. Rather we limit it to moderate values

(typically no more than 5). We also note that under our assumptions, differing from

those in e.g. [11], the error is the same for hyperbolic and elliptic points with identical

principal curvatures. If the vertices of quads are expected to interpolate the surface,

optimality conditions in the hyperbolic case are different.

Uniform-error parameterization and shape operator metric. A natural approach to

define an optimal parameterization given a pointwise local error is to require the error

to have the same value ǫ over the whole surface, and minimize ǫ. This is however

distinct from most common methods that define a global energy as an integral measure

of a local error over the surface. Integrating the local error EQ over the surface results

in difficult-to-solve equations. Remarkably, equalizing the error in our case leads to a

simple condition on the error, if one of the constraints of the problem is relaxed.

Denote H = M(g)−1. Then the optimal uniform-error parametrization solves the

following constrained problem:

Minimize ǫ, subject to TrS2H = ǫ, and H = M(g)−1 everywhere. (7)

This problem is difficult to solve directly; instead, one can define an “ideal” metric

H , solving the minimal uniform-error density optimization problem with H as a free

variable, without the constraint H = M(g)−1.

In addition, to the constraint above, we constrain the total area the image of the surface

has in the parametric plane. This additional constraint is necessary as otherwise the

trivial solution of the problem is to set H to zero. This constraint has the following

form:

∫

A

det∇gdA =

∫

A

detH− 1

2 dA.

Then the Lagrange function with multipliers λ and µ for the constrained minimization

of ǫ is

ǫ+

∫

A

λTr(S2H) + µ detH− 1

2 dA.

We compute the L2-gradient of this expression with respect to H , using the identities

∂TrATB/∂A = B, and ∂ detA/∂A = detA(A−1)T , and symmetry of H , we get

λS2 +
1

2
µH−1 detH− 3

2 = 0

i.e., H = kS−2. Substituting into TrS2H = ǫ, we get k = ǫ/2, i.e., the scale factor is

independent of H .
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Figure 4: Top left to right: a conformal map, a map with a small amount of anisotropy added (α = 3),

and large amount of anisotropy (α = 0.1), where the metric tensor for the parameterization is α2I + S2.

Bottom left to right: corresponding uv maps color-coded by inverse parametric triangle area.

We conclude that the “ideal” parametrization has metric given by

M(g) = cS2, (8)

with c independent of the point. In particular, the error bound is the same (under re-

strictive assumptions on approximating quads outlined below) for all parameterization

differing by a rotation of the parametric plane (Figure 5).

In general, S2 may have small or zero eigenvalues, and using it alone as a metric is not

desirable, as this would result in infinitely long or thin quads. We can limit the possible

quad aspect ratios by using G(α) = α2I + S2 as the metric.

Figure 5: The right model shows the result of rotating the anisotropic parameterization 45 degrees. Observe

that the mesh elements remain stretched along the features.
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A Ā

parameterization

embedding

g

h

parameterization

ḡ = g ◦ h−1

Wednesday, December 15, 2010

Figure 6: An embedding h which has the desired metric G makes it possible to replace construction of g as

close as possible to metric G with construction of ḡ as close as possible to isometry.

We conclude that a uniform normal error parameterization g of a surface with nonzero

Gaussian curvature has a metric tensor coinciding with the square of the shape oper-

ator up to a globally constant scale factor, in other words, it is isometric in the metric

defined by the shape operator.

Embeddings. The Nash embedding theorems state that every Riemannian manifold

can be isometrically embedded into a (sufficiently high-dimensional) Euclidean space,

no matter what the metric might be.

The direct approach (cf. [33]) to obtain parametrizations with respect to modified

metric is to derive the equations for the parametrization directly in terms of the metric

tensor, and choose discretizations for the tensor and the parametric functions.

However, any surface equipped with an arbitrary metric can be embedded in a (usually

higher-dimensional) Euclidean space in which the metric coincides with the induced

metric (see Figure 6). This allows us to recast the problem of computing an isometric

parameterization g of A with a given metric to that of computing an isometric parame-

terization ḡ of the embedded surface Ā in the standard metric. Explicitly constructing

such an embedding for a general tensor may be difficult. Fortunately, for the specific

tensor we use a direct embedding construction is possible, and yields substantially bet-

ter results as we demonstrate in the next sections.

4. Anisotropic parameterization

The observation of the previous section reduces the problem of finding an equidis-

tributed error parameterization to that of finding an isometric parameterization in a

different metric. Most currently used techniques can be regarded as approximations to

the isometric parameterization in Euclidean metric, and can be naturally generalized

if the shape-operator metric can be computed robustly and accurately, as discussed in

Section 5.

9



We present anisotropic extensions for two parameterization techniques, harmonic, fol-

lowing [30] and feature-aligned, following [3]. As we have discussed in Section 2, the

advantage of the former is more direct and explicit control over the number of singu-

larities, while the latter yields parameterizations better aligned with mesh features, and

typically closer to isometric.

We regard both harmonic and feature-aligned parameterizations as two types of effi-

cient approximations to isometric maps (in the latter case with additional condition of

feature alignment) and demonstrate how these can be combined with anisotropy.

Isometric parameterization and harmonic maps. Isometric parameterizations do not

exist for surfaces with nonzero Gaussian curvature: at best, we can hope to approx-

imate an isometric parameterization. Minimizing the deviation of the metric tensor

from identity leads to nonlinear systems of equations for which no robust and effi-

cient solvers are available. For this reason, many techniques replace direct isometry

optimization with various types of factorizations.

Most commonly, harmonic maps, leading to linear systems, are used to minimize the

angle distortion, subject to the boundary conditions; harmonic parameterizations often

result in high area distortion. The idea of a number of recent methods [16, 12, 2, 30] is

to use harmonic maps with singularities to define a parameterization, and to reduce the

area distortion by introducing singularities and optimizing the singularity placement.

For the simplest case of a surface with disk topology, a harmonic map minimizes the

Dirichlet energy

E =

∫

A

(∇u)2 + (∇v)2dA (9)

where u and v are parametric coordinates, and ∇ is the surface gradient. Computing u
and v requires solving the linear Laplace-Beltrami equations ∆u = 0 and ∆v = 0.

Anisotropic harmonic maps. In case of isometry, conformal maps are defined by the

condition M(g) = cI; they preserve the ratio of the singular values of the identity

tensor I exactly. Anisotropic conformal maps satisfying M(g) = cG(α) have simi-

lar behavior in the shape operator metric. Intuitively, an anisotropic conformal map

takes a small circle in the parametric plane to an ellipse in the tangent plane of the

surface, with axes aligned with the principal curvature directions, and its aspect ratio is

determined by the ratio of principal curvatures. The effects of such a map, compared

to a conformal map, are illustrated in Figure 4. The anisotropic harmonic map is a

least-squares approximation to the anisotropic conformal map.

Isometric feature-aligned maps. Feature-aligned maps [17, 3] use a feature cross-field,

which locally can be regarded as a pair of orthogonal unit vectors (u,v) to define the

target directions for the surface gradients of parametric coordinates ∇u and ∇v. If the

desired gradient directions for coordinate functions are fixed, finding the as-isometric-

as-possible parameterization can be formulated as a linear optimization problem min-

imizing misalignment with the feature field and deviation of the gradient magnitude
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from the unit length:

E =

∫

A

(∇u− u)2 + (∇v − v)2dA (10)

As u and v are orthogonal, perfect minimization of this energy corresponds to an

isometric parameterization.

To obtain the anisotropic feature-aligned parameterization, we remap the feature field

on the original surface A to be orthogonal in the new metric M(g) = cG(α) and com-

pute a feature-aligned least-squares isometric (w.r.t. this new metric) parameterization

of A.

5. Discrete metric

To complete our construction, it remains to define a discrete metric G(α) by assigning

new lengths to each edge (12). While a variety of techniques can be used, we found

that the results can be quite sensitive to the choice of technique.

There are two approaches to discretize the continuous theory described in the previous

section:

• we can either work on the original surface A (Figure 6) and change the metric

according to a discrete estimation of the shape operator,

• or we can construct the embedding Ã explicitly and use the actual edge lengths

as the discrete metric.

Using the metric G(α) directly. The shape operator S can either be estimated per

vertex [9, 24, 18] or per triangle [26, 15].

For example, to discretize the Laplace-Beltrami equation that needs to be solved to

find the minimum of the Dirichlet energy (9), one can use piecewise-linear elements

for the parametrization, and constant metric tensors defined per triangle (for vertex-

based shape operator estimators, we can average the tensors at the three vertices).

To simplify the derivation, we assume that the embedding realization h of the metric

G(α) is known (the equations we obtain will depend on the metric tensor only, so h is

not used for discretization). This means that the differential of h satisfies ∇hT∇h =
G(α). As before, we assume that an orthonormal frame is defined on the tangent planes

of A and Ã, and all differentials are expressed in in these coordinates.

We express the parameterization differential ∇ḡ on Ã in terms of the parameterization

differential of the original surface ∇g as ∇ḡ = ∇g∇h−1 (see Figure 6). The Dirichlet

energy density ∇u2 + ∇v2 can be written in matrix form for the map g = (u, v) as

Tr∇g∇gT . Then for the Dirichlet energy density of the map ḡ we have

Tr∇ḡ∇ḡT = Tr∇g∇h−1(∇h−1)T∇gT = Tr∇gG(α)−1∇gT (11)
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The last equation can be expanded as ∇uG(α)−1∇uT +∇vG(α)−1∇vT . ( Note that

we consider ∇u and ∇v row vectors, so the terms in the this expression are norms with

respect to metric G(α)−1.)

Minimizing this energy leads to the generalized Laplacian equations for parametriza-

tion of the form div(G(α)−1∇g) = 0, identical to the equations obtained in [33] with

C = G(α)−1. Finite-element discretization of (11) is essentially identical to the Eu-

clidean metric case, if G(α) is constant per triangle.

We can show that this discretization reduces to simply rescaling edge lengths per ele-

ment using the metric tensor for this triangle, and computing the element matrix based

on these new lengths.

As the metric tensors assigned to two adjacent triangles do not necessarily yield iden-

tical results for scaling of the common edge, each edge has two distinct scaled lengths;

the examples in Section 7 demonstrate the effect of this mismatch.

We can instead enforce consistent edge lengths by averaging the two lengths obtained

by using either per-vertex or per element shape operators. However, it proves to be

fundamentally difficult to achieve a consistent discrete metric in this way which satis-

fies the triangle inequality for general meshes. The reason for this can be seen from

Figure 7. Suppose a triangle has bad alignment (long edge along principal direction

with larger curvature). If the metric length of each edge e is determined as the average

of two lengths (
√

eTM1e+
√

eTM2e)/2, and the singular values of Mi are 1 and k2,

except M3 for which they are 1 and (1+ a)k2, then for large l, a can be at most 4/(lk)
before the triangle inequality is violated. So any averaging method is likely to fail even

for small curvature variation: for k = 10 and l = 10, for instance, only 4% variation is

possible across an edge.

Constructing an embedding. An attractive alternative is to define an embedding of

the surface such that the Euclidean metric on the surface for this embedding yields an

approximation to the desired metric [4]. For the shape operator, the relevant embedding

is the Gauss map: f(p) = n(p) ∈ R3, because S = ∇n, i.e. S2 is exactly the metric

tensor of the Gauss map.

M1 M2

M3

l

1

Figure 7: A trian-

gle with aspect ratio l,

with 3 metric tensors

Mi at vertices

The shape operator satisfies Sv = ∇vn for a tangent vector v.

Applied to edge vectors eij = pi − pj on a triangle mesh (in a

coordinate frame D on the triangle) expressed in a local orthonor-

mal frame D, it can be discretized by Seij = DT (nj − nj) =
DT∆nij . Then the squared shape operator metric S2 is given by

eTijS
2eij = |∆nij |

2

In other words, the optimal metric edge length is simply the dis-

tance between endpoints of the edge in the Gauss map image of the

mesh. Note that so far, we only considered the embedding of the

mesh into a two-dimensional sphere given by mapping each vertex

vi to its normal ni. This, however, is not sufficient to obtain the

metric G(α) = α2I + S2.
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Figure 8: Left: Standard Gaussian curvature distribution in R
3 yields a crossfield with fewer singularities

on the head of the Julius model. Right: Gaussian curvature of the six-dimensional embedding exhibits too

many peaks and yields large clusters of singularities on the head. For visualization, the crossfield has been

linearly mapped from the tangent space of the six dimensional manifold back to that of the three-dimensional

manifold.

We therefore embed the mesh into R6, with a vertex vi mapped to

the point (αpi,ni), where α is a scale factor controlling the aspect

ratios. In this case, the Euclidean metric in R6 yields

l2ij = (αpi − αpj)
2 + (ni − nj)

2

= eTij(α
2I + S2)eij = eTijGeij

(12)

i.e. it corresponds to a linear combination of isometry and normal error metrics. This

defines the metric tensor G in terms of metric edge lengths lij . Since every mesh

triangle is embedded in Euclidean space, the metric edge lengths satisfy the triangle

inequality by construction.

Remapping the cross-fields. Conceptually, parametrizing the surface Ã embedded in

six dimensions is not different from parametrizing a surface in three dimensions. One

could remap the salient points on A to Ã, using the natural map p → (p,n), and then

compute the feature cross-field directly on Ã. However, in practice we observe that the

surface Ã is much “bumpier” (Figure 8) i.e., has greater oscillations of the Gaussian

curvature, due to higher variation of the shape operator included in the metric. The

cross-field optimization procedure of [3] tends to place cones at Gaussian curvature

extrema, which results in large numbers of cones. Instead, we perform cross field

optimization in three dimensions as before, and remap the resulting cross field to Ã.

Say for a triangle T the linear transform from T to T̃ in some two-dimensional local

coordinate systems is C, and the two orthogonal directions of the cross-field are u and

v = u⊥. First, we obtain a nonorthogonal cross field on the six-dimensional surface us-

ing vectors ±Cu and ±Cv. However, to achieve near-isometry, the crossfield needs to

be orthogonal. We consider normalized vectors u′ = Cu/‖Cu‖ and v′ = Cv/‖Cv‖,

and compute an orthonormal pair ū and v̄, such that (u′−ū)2+(v′−v̄)2 is minimized.

We observe that if we combine u′ and v′ into a matrix Q, this is equivalent to finding

the closest rotation matrix R to Q.
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In the case of general matrices Q with entries qij , the angle α between the x axis and

the direction of u is given by

α = arctan
q21 − q12
q11 + q22

In the case of columns of unit length, this expression can be further simplified, and the

resulting construction admits the following simple geometric interpretation. Consider

bisectors of the two pairs of angles formed by u′ and v′. This bisectors are perpendic-

ular (and in fact represent the rotation with the largest deviation from Q). The smallest

deviation from Q is obtained by π/4 rotation.1

Controlling aspect ratios. The parameter α can be used to control the maximal dis-

tortion either globally or locally. We found that the method is stable even for very

small values of α, which allow quads to stretch a lot. The singular values of the tensor

are α + κ2
1 and α + κ2

2, and the aspect ratio of the images of infinitesimal quads is
√

(α+ κ2
1)/(α+ κ2

2),where we assume |κ1| > |κ2|. By choosing

α =

√

rmax κ2 −min κ2

r − 1
(13)

globally, we can keep the aspect ratio below r. This is, however, a very conserva-

tive choice, which may eliminate the advantages of the method for surfaces with very

nonuniform curvature.

6. Implementation

The idea of using a shape-operator metric can be integrated with any quadrangulation

approach that only relies on the surface metric: the main change required is to modify

the metric-dependent quantities to use (12); additionally, for methods using vector or

tensor fields on surfaces, the fields need to be remapped as described in the previous

section.

The standard linear FEM discretization of the Laplace-Beltrami operator L involves

the computation of cotangent weights. These weights can be derived using only edge

lengths: for a triangle with sides a, b, c and angle γ = 6 (a, b) we can compute

cot(γ) =
a b cos(γ)

a b sin(γ)
=

a b cos(γ)

2 A

We can then write the triangle area A as

A =
1

4

√

(a+ b− c)(a− b+ c)(−a+ b+ c)(a+ b+ c)

1In [22], it was observed that cross-fields are most naturally interpreted as symmetric 4-tensors; this

yields an alternative approach to remapping fields.
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and use the cosine rule cos(γ) = (a2 + b2 − c2)/(2 a b) to arrive at the final form:

cot(γ) =
(a2 + b2 − c2)

√

(a+ b− c)(a− b+ c)(−a+ b+ c)(a+ b+ c))

The details of both harmonic and feature-aligned mixed-integer parameterization can

be found in [2, 30] and [17, 3] respectively. Here we present only a brief overview, to

point out the aspect of algorithms that were modified.

For both methods, we start with computing a normal field (we use the robust method of

[18]) and compute and smooth the scaling function α, followed by evaluating the metric

lengths lij using (12). Once the global parameterization is computed, we generate a

quad mesh by tracing parametric lines u = i, and v = i where i is an integer, and

determine quad vertex positions at integer u/v locations by linearly interpolating the

original mesh vertices.

Anisotropic harmonic parameterization. The main steps in this case are:

• iteratively optimize cone locations solving the Laplace equation for the scale

factors using metric edge length lij , or specify singularity locations manually;

• cut the mesh into a disk;

• quantize singularity indices to kπ/2 (if not specified by hand), and singularity

positions to integer locations;

• use harmonic parameterization with cotangent weights computed from lij to ob-

tain a global mesh parameterization matching across the seams of the cut.

The main distinction compared to the original method is computing all metric quanti-

ties (cotangent weights in particular) using lengths obtained in (12).

Anisotropic feature-aligned parameterization. In this case, we start with constructing

the 3D feature cross-field:

• identify salient triangles and fix their cross-field directions;

• compute a global smooth feature cross-field using the quadratic mixed integer

optimization of [3];

• detect singularities and cut the mesh into a disk so that the cut passes through all

singularities;

• label globally consistent u and v directions on the cut mesh;

• minimize the fit energy for parameterization gradients to u and v, enforcing

constraints along the cuts and constraining the changes in coordinates across

cuts to be integer.
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The last step may be repeated multiple times with increasing weights in the energy to

eliminate inverted triangles in the parameterization (stiffening).

For anisotropic feature-aligned parameterization, we remap the cross-fields on each

triangle to the new metric to the using the approach described in Section 4. Each

triangle T of the mesh for surface A corresponds to a triangle T̃ on the mesh for surface

Ã, with rescaled edge lengths lij . The linear transformation C is uniquely determined

by the affine transformation mapping T̃ to T .

7. Results

Comparison of different metric discretizations. First, we demonstrate the robustness

and feature sensitivity of our technique (Figure 9). We compare to an approach similar

to that of [33] described in Section (5). This method results in significant smoothing of

the metric, and, as a consequence, sharper features are not captured (Figure 9b.)

We attempt to set the scaled edge lengths again by averaging the lengths computed

using per-vertex shape operators at two endpoints (Figure 9d,e). We observe that even

for modest anisotropy, for a large number of facets the triangle inequality is violated;

refining the mesh in most cases eliminates the triangle inequality violations, but a large

number of iterations may be needed and resulting quadrangulation suffers from metric

smoothing similar to the per-triangle case (Figure 9e).

Figure 5 shows the effects of rotating parametric axes for anisotropic harmonic para-

meterization of a shape which does not require adding cones or cuts. Note that the

parameterization automatically squeezes quads to the lines of high curvature: the mesh

elements appear to preserve their orientation, while rotating in the parametric domain.

Impact of α. Figure 10 demonstrates the effect of decreasing the scale factor α. Smaller

α improve the normal error distribution by permitting quads with larger aspect ratios.

Comparisons with isotropic quadrangulation. Our primary comparison is to the mixed-

integer quadrangulation of [3] with no anisotropy. Figure 11, Figure 14, and Figure 15

show feature-aligned quadrangulations for a number of models.

For two models, we also compare to the periodic global parameterization (PGP) (Fig-

ure 11 and Figure 12). We observe that under some conditions, unaligned anisotropic

harmonic quadrangulation produces better results compared to aligned but isotropic

quadrangulation.

As our main target application is approximating the original meshes with semiregular

meshes with good visual quality, the ultimate criterion in this case (vs., for example,

remeshing for finite element simulation) is the appearance of the resulting models. For

this reason, we present smoothly shaded images of the remeshed models in Figure 15,

along with a pseudocolor rendering of the pointwise normal error (dark red corresponds

to maximal error, dark blue to no error). We choose relatively coarse quadrangulations
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a b c

d e

Figure 9: Comparison of different ways of specifying metric lengths (a) the original face mesh. (b) face-

tensor-based (c) our method (d) vertex-tensor averaging, triangles not satisfying metric inequality (e) after

refinement, metric inequality is satisfied, but quadrangulation misses some features.

to make the errors more apparent. The number of facets in the original models, the

number of quads as the fraction of the original model size, and the number of singular-

ities are summarized in the following table.

model facets reduced to cones

lion head 16674 17% 41

Julius 39168 28% 25

screwdriver 54300 3% 20

Stanford bunny 111364 3.5% 32

rocker arm 20088 8% 26

Omotondo 10000 25% 36

Max Planck 50790 35% 15

We emphasize that our technique aims to make the error distribution more uniform,

not to minimize an integral error measure, hence it is difficult to quantify the relative

quality of the result by a single number. In pseudocolor visualizations in Figure 15, one

can observe greater uniformity in pointwise error. A consistent increase in uniformity

is also confirmed by the plots of the pointwise error distribution: these plots show, for

a given abscissa β, (in percent of the max possible error in normal), the fraction of

vertices with error above β in log scale. Plots for anisotropic models are in red and for

isotropic in blue. Higher slope corresponds to more even error distribution.
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Normal error Aspect ratio

Figure 10: Impact of α on the normal approximation error and the quad aspect ratios observed on the Julius

model shown in Figure 15, top-left. Left: In log scale for a given abscissa β (in % of max. normal error) the

fraction of vertices with error above β. Right: In log scale the fraction of quads with aspect ratio above the

abscissa.

isotropic PGP anisotropic harmonic

Figure 11: Periodic global parameterization and (unaligned) harmonic anisotropic parameterization. Normal

error distribution is shown in pseudocolor.

Sharp features. As Figure 12 demonstrates, anisotropic harmonic quadrangulation can

handle models with sharp features robustly, even with no feature alignment. The mesh

for the fan disk model has only 8 singularities, i.e., the whole surface is mapped to the

surface of the cube. Although for noise-free the quality of the result is inferior to the

one that can be obtained by explicitly constraining the parameterization to be aligned

with sharp edges as described in [3], for scanned meshes similar to the screwdriver

example (Figure 15) when the edges of the mesh are not aligned with sharp features of

the underlying geometry.

For certain types of models, it may be highly desirable to preserve sharp features.

For feature-based parameterization, one can explicitly integrate perfectly sharp feature

edges into the process, by forcing the field to be aligned with these edges and forcing

one of parametric coordinates to be constant along these edges. This typically requires

introducing a sufficient number of singular vertices.

In the context of our method, one can introduce parameterization discontinuities along

sharp edges without introducing extraordinary vertices, at the expense of introducing

collapsed quads on a regular mesh. Figure 13 shows a case where sharp features were

tagged along the connection of the model to the plane, and degenerate triangles were
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Figure 12: Quadrangulation of a model with sharp features. From left to right: the original model, remeshing

using PGP, remeshing using anisotropic harmonic map. Both remeshed models retain approximately 20% of

faces of the original model. 8 singularities are used for the anisotropic map, i.e., the model is parametrized

over the surface of a cube.

inserted along these creases. For normal calculations the creases were treated as inter-

nal boundaries.

8. Conclusion

The most appealing features of the proposed method are its robustness, its simplicity

and its compatibility with a number of other approaches.

As we generate quads with possibly large angles the resulting meshes are in general

not suitable for solving equations on surfaces, unless the aspect ratio is limited to a

moderate value; even with this restriction we can still expect a reduction in the number

of quads needed for a given approximation quality (Figure 10).

While we do provide control over maximal aspect ratios, it is far from a complete

solution, especially in cases of rapid edge length variation.

The method takes advantage of the possibility of discretizing the shape operator metric

using a high-dimensional embedding. We would like to extend this to approximate

embedding discretizations for arbitrary metric tensors.
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