Extending Catmull-Clark Subdivision and PCCM with Polar Structures

Ashish Myles Kestutis Karčiauskas Jörg Peters

Pacific Graphics
November 1, 2007
Overview
Overview

Extending Catmull-Clark Subdivision and PCCM with Polar Structures

A. Myles
K. Karčiauskas
J. Peters

Polar Structure Examples
Modeling
Refinement
Polar refinement
General mesh refinement
NURBS Constructions
Overview
Overview

Valence $\neq 4$
Overview

Catmull-Clark subdivision

Valence ≠ 4

Extending Catmull-Clark Subdivision and PCCM with Polar Structures
A. Myles
K. Karčiauskas
J. Peters

Polar Structure
Examples
Modeling

Refinement
Polar refinement
General mesh refinement

NURBS
Constructions
Overview

Catmull-Clark subdivision

Valence ≠ 4

PCCM
Overview

Catmull-Clark subdivision

Valence ≠ 4

PCCM
Overview

New Bi-cubic polar subdivision

Polar layout

Catmull-Clark subdivision

Valence $\neq 4$

PCCM
Overview

New Bi-cubic polar subdivision

Polar layout

New NURBS capping

Overview

New Bi-cubic polar subdivision

Polar layout

New NURBS capping

Catmull-Clark subdivision

Valence ≠ 4

PCCM
Polar structures appear naturally

Eye courtesy of "Blender: Noob to Pro"
Remove those unsightly wrinkles

Catmull-Clark Our method
Make predictable ripples

Catmull-Clark

Our method
Model designers face the following challenges

Conventional picture

1. Align control mesh along features.

2. Use only quads.

Model designers face the following challenges

New and improved picture

1. Align control mesh along features.

2. Use quads *and* polar structures.

3. Keep quad-mesh valence low. High polar valence OK!
Model a face using polar structures and multi-sided
Modeling with polar connectivity

1. keeps the Catmull-Clark valence low,
2. shifts high-valence connectivity to polar structures, and
3. orients the control lines along model features (e.g. mouth).
Mesh Refinement

- Bi-cubic subdivision
- Polar layout
- NURBS capping

- Catmull-Clark subdivision
- Valence $\neq 4$
- PCCM

A. Myles
K. Karčiauskas
J. Peters

Polar Structure
Examples
Modeling
Refinement
Polar refinement
General mesh refinement
NURBS Constructions
Polar refinement

Extending Catmull-Clark Subdivision and PCCM with Polar Structures

A. Myles
K. Karčiauskas
J. Peters

Polar Structure
Examples
Modeling
Refinement
Polar refinement
General mesh refinement
NURBS
Constructions
Polar refinement

\[
\begin{align*}
\alpha &= \beta - \frac{1}{4}, \quad \beta := \frac{5}{8}, \\
\gamma_k &= \frac{1}{n} \left(\beta - \frac{1}{2} + \frac{5}{8} c_n^k \right) + (c_n^k)^2 + \frac{1}{2} (c_n^k)^3
\end{align*}
\]
Polar refinement

\[
\alpha := \beta - \frac{1}{4}, \quad \beta := \frac{5}{8},
\]

\[
c^n_k := \cos \left(\frac{2\pi k}{n} \right),
\]

\[
\gamma_k := \frac{1}{n} \left(\beta - \frac{1}{2} + \frac{5}{8} c^n_k \right) + \left(c^n_k\right)^2 + \frac{1}{2} \left(c^n_k\right)^3
\]
Polar is easily combined with Catmull-Clark

Extending Catmull-Clark Subdivision and PCCM with Polar Structures

A. Myles
K. Karčiauskas
J. Peters

Polar Structure
 Examples
 Modeling

Refinement
 Polar refinement
 General mesh refinement

NURBS Constructions
Polar is easily combined with Catmull-Clark Subdivision and PCCM with Polar Structures

A. Myles
K. Karčiauskas
J. Peters

Polar Structure
Examples
Modeling
Refinement
Polar refinement
General mesh refinement

NURBS
Constructions
Polar is easily combined with Catmull-Clark
Polar is easily combined with Catmull-Clark
Polar is easily combined with Catmull-Clark

$\Rightarrow C^1$ with bounded curvature at the polar limit point.

- Verified using standard analysis tools from subdivision theory.
Results
Extending Catmull-Clark Subdivision and PCCM with Polar Structures

A. Myles
K. Karčiauskas
J. Peters

Polar Structure
Examples
Modeling
Refinement
Polar refinement
General mesh refinement
NURBS Constructions

NURBS Constructions

Bi-cubic subdivision

Polar layout

NURBS capping

NURBS Constructions

Catmull-Clark subdivision

Valence $\neq 4$

PCCM
Polar structures can be C^1 capped by a single NURBS patch
Polar structures can be C^1 capped by a single NURBS patch.

1. subdivide radially

k-times subdivided mesh

original control mesh
Polar structures can be C^1 capped by a single NURBS patch

1. subdivide radially

2. project

k-times subdivided mesh

original control mesh

periodic B-spline

original control mesh

periodic B-spline
Capping Polar with a single NURBS patch

Extending Catmull-Clark Subdivision and PCCM with Polar Structures
A. Myles
K. Karčiauskas
J. Peters

Polar Structure
Examples
Modeling
Refinement
Polar refinement
General mesh refinement
NURBS Constructions
Capping Polar with a single NURBS patch

$\Rightarrow C^1$ with bounded curvature at the polar limit point.

- Singular parametrizations typically tricky
- Our B-spline patch $=$ limit surface of a particular subdivision scheme
- Analyze using subdivision machinery!
Results
Extending Catmull-Clark Subdivision and PCCM with Polar Structures

A. Myles
K. Karčiauskas
J. Peters

Polar Structure
Examples
Modeling
Refinement
Polar refinement
General mesh refinement

NURBS Constructions

Conclusion

Bi-cubic subdivision

Polar layout

NURBS capping

Catmull-Clark subdivision

Valence $\neq 4$

PCCM
Extending Catmull-Clark Subdivision and PCCM with Polar Structures

A. Myles
K. Karčiauskas
J. Peters

Questions?

Bi-cubic subdivision

Polar layout

NURBS capping

Catmull-Clark subdivision

Valence ≠ 4

PCCM

Questions?
Extending Catmull-Clark Subdivision and PCCM with Polar Structures

A. Myles
K. Karčiauskas
J. Peters

Polar Structure
Examples
Modeling
Refinement
Polar refinement
General mesh refinement

NURBS
Constructions
High-valent Catmull-Clark layout \rightarrow polar layout
High-valent Catmull-Clark layout → polar layout
Analysis

\[A = \begin{bmatrix} A_0 & A_1 & \ldots & A_{n-1} \\ A_{n-1} & A_0 & \ldots & A_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ A_1 & \ldots & A_{n-1} & A_0 \end{bmatrix} \]

\[A_0 := \begin{bmatrix} 1/n & 0 & 0 & 0 \\ 1/n & \Gamma_0 & 0 & 0 \\ 0 & 3/4 & 1/4 & 0 \\ 0 & 3/16 & 11/16 & 1/8 \end{bmatrix}, \quad A_i := \begin{bmatrix} 1/n & 0 & 0 & 0 \\ 1/n & \Gamma_i & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}. \]
Analysis

Spectral analysis of A (circulant) gives desired properties:

 Eigenvalues: $1, \frac{1}{2}, \frac{1}{2}, 1/4, \ldots, 1/4$.

Characteristic map is regular ($\Rightarrow C^1$).

Geometric multiplicities $=$ algebraic multiplicities for A.

\Rightarrow Bounded curvature.
Tensor product B-spline refinement
Separating Catmull-Clark and polar extraordinary limit points

\[1 - \alpha \frac{\alpha}{n} \]
\[1 - \beta \gamma_i \]
\[\gamma_{i+1} \]
\[\gamma_{i-1} \]

radial

circular

\[\frac{1}{8}, \frac{6}{8}, \frac{1}{8} \]
\[\frac{1}{2}, \frac{1}{2} \]
\[\frac{1}{8}, \frac{6}{8} \]
\[\frac{1}{2}, \frac{1}{2} \]