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ABSTRACT
Quadrangulation methods aim to approximate surfaces by semi-
regular meshes with as few extraordinary vertices as possible. A
number of techniques use the harmonic parameterization to keep
quads close to squares, or �t parametrization gradients to align
quads to features. Both types of techniques create near-isotropic
quads; feature-aligned quadrangulation algorithms reduce the remesh-
ing error by aligning isotropic quads with principal curvature direc-
tions. A complementary approach is to allow for anisotropic ele-
ments, which are well-known to have signi�cantly better approxi-
mation quality.
In this work we present a simple and ef�cient technique to add
curvature-dependent anisotropy to harmonic and feature-aligned pa-
rameterization and improve the approximation error of the quadran-
gulations. We use a metric derived from the shape operator which
results in a more uniform error distribution, decreasing the error
near features.

Categories and Subject Descriptors
I.3.5 [Computational Geometry and Object Modeling]: Geo-
metric algorithms, languages, and systems

Keywords
parameterization, quadrangulation, remeshing, conformal parame-
terization.

1. INTRODUCTION
Most common techniques for generating meshes from range scans
and volumetric data produce irregular meshes with complex con-
nectivity. A surface can be stored in a much more compact form,
simplifying and speeding up rendering and processing if it is con-
verted to a predominantly regular mesh, with only a small number
of irregular vertices and faces. It is desirable to minimize the num-
ber of vertices in the semiregular mesh, while keeping it close to
the original mesh.
Recent quadrangulation algorithms use aglobal parameterization
of a mesh; the new mesh is obtained using a regular sampling pat-
tern in the plane. Quite often, the parameterization is optimized
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to be as isometric possible. However, isometric parameterizations
may be far from optimal for surface remeshing, if the goal is to ob-
tain a surface as close as possible to the original for a given number
of faces. For example, a cylinder can be mapped isometrically to
the plane, resulting in a uniform sampling pattern on the surface.
It can, however, also be meshed with single long quads stretched
along the axial direction, with the same approximation error. We
call quadrangulations that adapt the quad aspect ratio to the sur-
face shapeanisotropic. We present asimpleand robust method
for computing anisotropic quadrangulations with quad aspect ratios

original

anisotropic

isotropic

Figure 1: Quadrangulations of a lion head model. Top: the
original model; middle: isotropic feature-aligned quadrangula-
tion (25% reduced) bottom: anisotropic feature-aligned quad-
rangulation
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adapted to local curvature, obtaining a good surface approximation
with fewer quads.
Our method utilizes a curvature-based surface metric and computes
the parameterization using this metric, rather than the Euclidean
metric. Our approach is compatible with most parameterization
methods that only rely on intrinsic quantities and vector �elds on
the surface.
De�ning a metric for meshes is conceptually simple: we assign a
new length to each edge. However, each edge length has to sat-
isfy local triangle inequality constraints. It is a surprisingly dif�-
cult task to ensure that no inequality is violated, and while it may
still be possible to compute a parameterization, the results may not
have the desired anisotropic behavior (Section 5). We solve this
problem using the idea of a high-dimensional embedding [20, 4]:
the Euclidean metric in the higher-dimensional space de�nes the
new edge lengths for the mesh. The embedded vertex coordinates
consist of the original positional and normal coordinates, making
the new edge length computation straightforward.

2. RELATED WORK
The literature on parameterization, remeshing and quadrangulation
is vast; [20], [4] and [9] are the most closely related to our work.
Our key observation is that the high-dimensional embedding pro-
posed in [4] to obtain anisotropic quadrangulations with the quad
aspect ratio determined by the ratio of principal curvatures can be
applied in the context of a particular class of parameterization tech-
niques, and yields robust results while preserving �ne surface fea-
tures.
Many recent quadrangulation methods (in contrast to the work based
on the construction of base complexes by simpli�cation [12, 18, 17,
8]) have similar structure: a global parameterization is obtained by
solving equations for gradients of parametric functions, and a new
mesh is generated by following parametric lines. The two main cat-
egories of methods of this type are harmonic and feature-aligned.
Harmonic and conformal methods(for brevity we will we refer to
both as harmonic) are robust, ef�cient and typically produce good
results even for complex meshes for a suitable choice of singulari-
ties and boundary conditions. Some quadrangulation methods use
harmonic maps directly [10, 29]. These methods can be viewed
as minimizing nonconformality of the map, while allowing signi�-
cant area scaling; nonlinear methods such as [25, 27] are needed to
guarantee a one-to-one parameterization. Extreme area distortion
is reduced by adding singularities (or “cones”) to the parameteriza-
tion, with several methods for automatic placement of singularities
proposed in [10, 1, 27]. These techniques allow explicit user con-
trol over the number of irregular points on the mesh. The downside
of harmonic techniques, especially in the context of remeshing, is
that non-intrinsic shape information is not used directly.

aligned

anisotropic anisotropic+
aligned

isotropic
unaligned

Figure 2: Quad alignment
and anisotropy

The shape information can be
taken into account in two dis-
tinct ways to minimize the ap-
proximation error. Locally, a
smooth shape can be character-
ized by its shape operator. Fig-
ure 2 show two ways of taking
the shape operator into account
(with principal curvature direc-
tions scaled by inverse principal
curvatures shown in red).
A “perfect” quad of a given
area approximating a surface is
aligned, i.e., has edges parallel
to principal curvature directions

andanisotropici.e., has aspect ratio inversely proportional to the
ratio of principal curvatures. This corresponds to two classes of
feature-aware parameterization techniques.
Feature-alignment methods[22, 15, 2] adapt the parameterization
to the shape by aligning new mesh elements with a feature �eld,
typically derived from the principal curvature direction �eld, either
by smoothing, or interpolation of salient features. The singularities
of the parameterization are determined by the singularities of the
�eld, so the feature �eld cannot match the actual curvature �eld
too closely: substantial smoothing is needed to keep the number
of singularities small. The shape of the quads generated by these
techniques tends to be uniform, rather than anisotropic: one can
view these techniques as minimizing non-isometry, while aligning
with the feature �eld. [2] permits a degree of anisotropy, penalizing
changes in length less than changes in the direction, but without
relating these to curvature.
In geometric modeling,anisotropic parameterizationwas intro-
duced as signal-specialized parameterization [24, 28]. This work
uses a metric derived from the Hessian of the signal to adapt the
parameterization to a signal de�ned on the surface; in particular,
the surface itself can be used as the signal. Zayer et al. [32, 30,
31] describe a general class of parameterization methods based on
solving a generalized Laplace or Poisson equation using a tensor
�eld, which can be interpreted as a metric tensor. An elegant for-
mulation for related quasi-conformal maps based on Beltrami fac-
tors described in [33]. The interpolation and stiffness properties of
anisotropic linear triangles in �nite-element context are discussed
in detail in [26]. [5] derives bounds on the Haussdorf-distance ap-
proximation of manifolds using a metric closely related to the one
that we use.
We show how to use a metric de�ned on a surface to obtain anisotropic
versions of global quadrangulation algorithms, both harmonic and
feature-aligned, and demonstrate the improvements in surface ap-
proximation that can be obtained in this way. To the best of our
knowledge, metric-based techniques were not yet applied to quad-
rangulation, although [29] suggests that this is possible by altering
the Laplace equation coef�cients without suggesting a speci�c way
to compute the metric.
We emphasize that we view using anisotropic metric as comple-
mentary to curvature-alignment approaches, rather than alternative
to these. Curvature-alignment methods allow to obtain a geomet-
rically meaningful set of singularities and coarse alignment with
the shape; Anisotropy helps to resolve sharp features locally with
fewer vertices, and allows to keep the number of parameterization
singularities low.

3. ANISOTROPIC METRIC

Figure 3: Notation

The main idea of our ap-
proach is to de�ne a new
metric (that is, new edge
lengths) on a mesh, and use an
isometry-approximating para-
meterization based on these
edge lengths for quadrangula-
tion. The discrete metric is
given by Equation (5). Our
goal in this section is to ex-
plain the motivation for this
choice. First, we discuss the
local error and the choice of the best approximating quad; under
the assumptions that we make, and similarly to previous work, the
optimal quad is aligned with principal curvature directions, and has
aspect ratio proportional to the ratio of principal curvatures.

2



Second, we discuss how local errors can be combined together to
obtain equations for the parameterization of the whole surface. We
show that isometry in the shape-operator corresponds to optimal
equidistributederror.

De�nitions. Important local properties of a parameterization are
captured by themetric tensor. Suppose a surfaceA is de�ned by
a functionf : R 2 ! A (Figure 3). Asurface parameterizationis
the inverse map from the surface to the planeg : A ! R 2 . In our
exposition, it is convenient to �x a surface pointp and the tangent
planeP at this point. In this case,r f is a linear map from the
parametric plane toP .
Recall that the metric tensor off is de�ned by

M (f ) = ( r f )T r f (1)

and is given by a2 � 2 symmetric positive-de�nite matrix. For a
vectorv = q2 � q1 in the parametric domain de�ned by a pair
of close pointsq1 andq2 , the quadratic formv T M (f )v is, in the
limit, the squared length of the image ofv : jf (q2) � f (q1)j2 .

3.1 Normal approximation error and metric
The local normal approximation error measure (e.g., [6]) is similar
to the gradient error measure in �nite elements [9]. This error cor-
responds more closely to the perceived visual quality of an approx-
imation, compared to, for example, the distance between points on
the surface. For the purposes of de�ning a pointwise error, we con-
sider an idealized setting: (1) The surface has well-de�ned curva-
ture, with nonvanishing Gaussian curvature. (2) For a parameteri-
zationg, we consider the approximation of the surface by a collec-
tion of small quads. Each quadQ is a parallelogram obtained by
mapping a squareQp of edge lengthh from a regular grid in the
plane to the tangent plane of the surface at a pointg � 1(c) = f (c),
usingr f . (3) We assume the surface to be well-approximated by a
quadratic function over the tangent plane over each quad.
We de�ne the error for a quadQ in the tangent planeP with normal
nQ as the square of the average of the deviation of the normal on
the part of the surfaceA(Q) projected to the quadQ alongnQ .

E 2
Q =

1
Area(Q)

Z

A ( Q )
knS (q) � nQ k2dq (2)

It can be shown (appendix A) that up to high-order terms,

E 2
Q =

h4

12
Tr

�
S2M (g) � 1 �

; (3)

whereS denotes the shape operator.
EQ is highly similar to the gradient interpolation error for linear
elements [26], yet there is an important distinction. As discussed
in [26, 3], that error has a strong dependence on the shape of the
element in the physical space (in our case, the shape of the approx-
imating quad).
Speci�cally, if a square is mapped to the tangent plane using a map
f with metricS� 2 , and the edges of the quad form a large angle in
the tangent plane, the error, instead of being independent of curva-
ture as suggested by (3) and (4) may be of orderah2 , wherea is the
ratio of max to min curvature; so the error distribution over the sur-
face is clearly nonuniform. The fact that the quads we consider are
tangent to the surface changes this behavior. However, in this work
we are primarily concerned with the case when arbitrary anisotropy
is not allowed. Rather we limit it to moderate values (typically no
more than 5). We also note that under our assumptions, differing
from those in, e.g.,[9], the error is the same for hyperbolic and el-
liptic points with identical principal curvatures. If the vertices of

Figure 4: Top left to right: a conformal map, a map with a
small amount of anisotropy added (� = 3 ), and large amount
of anisotropy (� = 0 :1), where the metric tensor for the para-
meterization is � 2 I + S2 . Bottom left to right: corresponding
uv maps color-coded by inverse parametric triangle area.

quads are expected to interpolate the surface, optimality conditions
in the hyperbolic case are different.

Uniform-error parameterization and shape operator met-
ric. A natural approach to de�ne an optimal parameterization given
a pointwise local error is to require the error to have the same value
� over the whole surface, and minimize� . (This is however distinct
from many methods that de�ne a global energy as an integral mea-
sure of a local error over the surface). Integrating the local error
EQ over the surface results in dif�cult-to-solve equations.Equal-
izing the error, however, leads to a simple condition on the error
(appendix A): if we assume that the metric tensorM (g) can be
chosen arbitrarily, and the total parametric area of the surfaceA tot

is �xed, then the standard Lagrange multiplier solution of this con-
strained minimization problem is given by

M (g) = cS2 ; (4)

with c independent of the point (the actual value ofc is irrelevant
for our purposes). In particular, the error bound is the same (un-
der restrictive assumptions outlined below) for all parameterization
differing by a rotation of the parametric plane (Figure 5).
In general,S2 may have small or zero eigenvalues, and using it
alone as a metric is not desirable, as this would result in in�nitely
long or thin quads. We can limit the possible quad aspect ratios by
usingG(� ) = � 2 I + S2 as the metric.

Figure 5: The right model shows the result of rotating the
anisotropic parameterization 45 degrees. Observe that the
mesh elements remain stretched along the features.

We conclude thatA uniform normal error parameterization of a
surface with nonzero Gaussian curvature has a metric tensor coin-
ciding with the square of the inverse of the shape operator up to a
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globally constant scale factor, in other words, it is isometric in the
metric de�ned by the inverse of the shape operator.

4. ANISOTROPIC PARAMETERIZATION
The observation of the previous section reduces the problem of
�nding an equidistributed error parameterization to that of �nd-
ing an isometric parameterization in a metric. Most currently used
techniques can be regarded as approximations to the isometric para-
meterization in Eucledean metric, and can be naturally generalized
if the shape-operator metric can be computed robustly and accu-
rately, as discussed in Section 5.
We present anisotropic extensions for two parameterization tech-
niques, harmonic, following [27] and feature-aligned, following
[2]. As we have discussed in Section 2, the advantage of the former
is more direct and explicit control over the number of singularities,
while the latter yields parameterizations better aligned with mesh
features, and typically closer to isometric.
We regard both harmonic parameterization and feature-aligned pa-
rameterization as two types of ef�cient approximations to isometric
maps (in the latter case with additional condition of feature align-
ment) and demonstrate how these can be combined with anisotropy.

Isometric parameterization and harmonic maps.Iso-
metric parameterizations do not exist for surfaces with nonzero
Gaussian curvature: at best, we can hope to approximate an isomet-
ric parameterization. Minimizing the deviation of the metric tensor
from identity leads to nonlinear systems of equations for which no
robust and ef�cient solvers are available. For this reason, many
techniques replace direct isometry optimization with various types
of factorizations.
Most commonly, harmonic maps, leading to linear systems, are
used to minimize the angle distortion, subject to the boundary con-
ditions; harmonic parameterizations often result in high area distor-
tion. The idea of a number of recent methods [14, 10, 1, 27] is to
use harmonic maps with singularities to de�ne a parameterization,
and to reduce the area distortion by introducing singularities and
optimizing the singularity placement.

Anisotropic harmonic maps.In case of isometry, conformal
maps are de�ned by the conditionM (g) = cI ; they preserve
the ratio of the singular values of the identity tensorI exactly.
Anisotropic conformal mapssatisfyingM (g) = cG(� ) have simi-
lar behavior in the shape operator metric. Intuitively, an anisotropic
conformal map takes a small circle in the parametric plane to an el-
lipse in the tangent plane of the surface, with axes aligned with
the principal curvature directions, and its aspect ratio is determined
by the ratio of principal curvatures. The effects of such a map,
compared to a conformal map, are illustrated in Figure 4. The
anisotropic harmonic map is a least-squares approximation to the
anisotropic conformal map.

Anisotropic feature-aligned maps.Feature-aligned maps [15,
2] use a feature cross-�eld, which locally can be regarded as a pair
of orthogonal unit vectors(u; v ) to de�ne the target directions for
the surface gradients of parametric coordinatesr u andr v. If de-
sired gradient directions for coordinate functions are �xed, �nding
the as-isometric-as-possible parameterization can be formulated as
a linear optimization problem minimizing misalignment with the
feature �eldanddeviation of the gradient magnitude from the unit
length:

E =
Z

A
(r u � u)2 + ( r v � v )2dA

As u and v are orthogonal, perfect minimization of this energy
corresponds to an isometric parameterization.
To obtain theanisotropic feature-aligned parameterization, we re-
place the original surfaceA with ~A, which is the same surface but
with the metric rede�ned to beG (the ways to de�ne~A practically
are discussed in Section 5). Then we remap the feature �eld from
A to ~A and compute a feature-aligned least-squares isometric para-
meterization of~A.

Remapping the cross-�elds.Conceptually, parametrizing the
surface~A embedded in six dimensions is not different from parametriz-
ing a surface in three dimensions. One could remap the salient
points onA to ~A, using the natural mapp ! (p; n), and then
compute the feature cross-�eld directly on~A. However, in prac-
tice we observe that the surface~A is much “bumpier”, i.e., has
greater oscillations of the Gaussian curvature, due to higher varia-
tion of the shape operator included in the metric. The cross-�eld
optimization procedure of [2] tends to place cones at Gaussian cur-
vature extrema, which results in large numbers of cones. Instead,
we perform cross �eld optimization in three dimensions as before,
and remap the resulting cross �eld to~A.
To remap the cross-�eld, we regard it as a bilinear form on tan-
gent vectors. If for a triangleT , the linear transform fromT to
~T in some two-dimensional local coordinate systems isC, and
the principal directions of the cross-�eld areu andv = u? , the
cross-�eld, can be associated with a unique (up to a sign) tensor
B with singular values� 1 and1, and singular directionsv andu
B = u 
 u � v 
 v . We obtain the new cross-�eld by transforming
B using the standard transformation for symmetric tensors

~B = CT BC;

and obtain the cross-�eld directions� ~u and� ~v as singular direc-
tions of this tensor. One can show that as long asC is nonsingular,
there is a one-to-one correspondence between these four directions
and the original cross-�eld directions1

5. DISCRETE METRIC
To complete our construction, it remains to de�ne a discrete metric
G(� ) by assigning new lengths to each edge (5). While a variety
of techniques can be used, we found that the results can be quite
sensitive to the choice of technique.
The most obvious approach is to estimate the shape operatorS ei-
ther per vertex [7, 21, 16] or per triangle face [23, 13]. Using these
estimates of the shape operator makes it possible to use the quasi-
conformal map setting of [30] to compute the parameterization.
However, it proves to be fundamentally dif�cult to transition from
a metric tensor de�ned in either way to a discrete metric de�ned
per edge length, which satis�es the triangle inequality for general
meshes. The reason for this can be seen from Figure 6. Suppose a
triangle has bad alignment (long edge along principal direction with
larger curvature). If the metric length of each edgee is determined
as the average of two lengths(

p
eT M 1e +

p
eT M 2e)=2, and the

singular values ofM i are1 andk2 , exceptM 3 for which they are1
and(1 + a)k2 , then for largel , a can be at most4=(lk ) before the
triangle inequality is violated. So any averaging method is likely to
fail even for small curvature variation: fork = 10 andl = 10 , for
instance, only4% variation is possible across an edge.

1In [19], it was observed that cross-�elds are most naturally inter-
preted as symmetric 4-tensors, rather than 2-tensors, which elim-
inates the sign ambiguity; one could use this correspondence to
remap the �elds.
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An attractive alternative is to de�ne an embedding of the surface
such that the Euclidean metric on the surface for this embedding
yields an approximation to the desired metric tensor [3]. For the
shape operator, the relevant embedding is theGauss map: f (p) =
n(p) 2 R 3 , becauseS = r nT , i.e. S2 is exactly the metric tensor
of the Gauss map.

M1 M2

M3

l

1

Figure 6: A trian-
gle with aspect ra-
tio l , with 3 metric
tensors M i at ver-
tices

The shape operator satis�esSv = r v n
for a tangent vectorv . Applied to edge
vectorseij = pi � pj on a triangle mesh,
it can be discretized bySeij = n j �
n j = � n ij . Then the squared shape
operator metricS2 is given by

eT
ij S2eij = j� n ij j2

In other words,the optimal metric edge
length is simply the distance between
endpoints of the edge in the Gauss map
image of the mesh. Note that so far,
we only considered the embedding of
the mesh into a two-dimensional sphere
given by mapping each vertexvi to its
normal n i . This, however, is not suf-
�cient to obtain the metricG(� ) =
� 2 I + S2 .
We therefore embed the mesh intoR 6 , with a vertexvi mapped to
the point(� p i ; n i ), where� is a scale factor controlling the aspect
ratios. In this case, the Euclidean metric inR 6 yields

l2
ij = ( � p i � � p j )2 + ( n i � n j )2

= eT
ij (� 2 I + S2)eij = eT

ij Geij

(5)

i.e., it corresponds to a linear combination of isometry and normal
error metrics. This de�nes the metric tensorG in terms of metric
edge lengthsl ij . Since every mesh triangle is embedded in Eu-
clidean space, the metric edge lengths satisfy the triangle inequality
by construction.

Controlling aspect ratios.The parameter� can be used to
control the maximal distortion either globally or locally. We found
that the method is stable even for very small values of� , which
allow quads to stretch a lot. The singular values of the tensor are
� + � 2

1 and� + � 2
2 , and the aspect ratio of the images of in�nitesimal

quads is
p

(� + � 2
1)=(� + � 2

2),where we assumej� 1 j > j� 2 j. By
choosing

� =

r
r max � 2 � min � 2

r � 1
(6)

globally, we can keep the aspect ratio belowr . This is, however,
a very conservative choice, which may eliminate the advantages of
the method for surfaces with very nonuniform curvature.

6. IMPLEMENTATION
The idea of using a shape-operator metric can be integrated with
any quadrangulation approach that only relies on the surface met-
ric: the main change required is to modify the metric-dependent
quantities to use (5); for methods using vector or tensor �elds on
surfaces, these need to be remapped accordingly.
The details of both harmonic and feature-aligned mixed-integer pa-
rameterization can be found in [1, 27] and [15, 2] respectively. Here
we present only a brief overview, to point out the aspect of algo-
rithms that were modi�ed.

For both methods, we start with computing a normal �eld (we use
the robust method of [16]) and compute and smooth the scaling
function� , followed by evaluating the metric lengthsl ij using (5).
Once the global parameterization is computed, we generate a quad
mesh by tracing parametric linesu = i , andv = i wherei is an in-
teger, and determine quad vertex positions at integeru=v locations
by linearly interpolating the original mesh vertices.

Harmonic parameterization.The main steps in this case are:
– iteratively optimize cone locations solving the Laplace equation
for the scale factors using metric edge lengthl ij , or specify singu-
larity locations manually;
–cut the mesh into a disk;
–quantize singularity indices tok�= 2 (if not speci�ed by hand),
and singularity positions to integer locations;
–use harmonic parameterization with cotangent weights computed
from l ij to obtain a global mesh parameterization matching across
the seams of the cut. The main distinction compared to the orig-
inal method is computing all metric quantities (cotangent weights
in particular) using lengths obtained in (5).

Feature-aligned parameterization.In this case, we start with
constructing the 3D feature cross-�eld: – identify thesalientloca-
tions on the mesh for which the cross-�eld directions are �xed;
– compute a global smooth feature cross-�eld using the quadratic
mixed integer optimization of [2];
– detected singularities, and cut the mesh into a disk, so that the cut
passes through all singularities;
– label globally consistentu andv directions on the cut mesh;
– minimize the �t energy for parameterization gradients tou andv ,
enforcing constraints along the cuts and constraining the changes in
coordinates across cuts to be integer.
The last step may be repeated multiple times with increasing weights
in the energy to eliminate inverted triangles in the parameterization
(stiffening).
For anisotropic feature-aligned parameterization, we remap the cross-
�elds on each triangle to the new metric to the using the approach
described in Section 4. Each triangleT of the mesh for surface
A corresponds to a triangle~T on the mesh for surface~A, with
rescaled edge lengthsl ij . The linear transformationC is uniquely
determined by the af�ne transformation mapping~T to T .

7. RESULTS

Comparison of different metric discretizations.First, we
demonstrate the robustness and feature sensitivity of our technique
(Figure 7). We compare to an approach similar to that of [30],
rewriting the shape-metric Dirichlet energy as

R
A (r G u)2dA, where

the gradientr G is computed using a per-triangle estimate of the
shape operator; effectively this is similar to averaging metric lengths
of an edge with respect to the operators on two incident triangles.
This method results in signi�cant smoothing of the metric, and, as
a consequence, sharper features are not captured (Figure 7b.)
We attempt to set the scaled edge lengths again by averaging the
lengths computed using per-vertex shape operators at two endpoints
(Figure 7d,e). We observe that even for modest anisotropy, for
a large number of facets the triangle inequality is violated; re�n-
ing the mesh in most cases eliminates the triangle inequality viola-
tions, but a large number of iterations may be needed and resulting
quadrangulation suffers from metric smoothing similar to the per-
triangle case (Figure 7e).
Figure 5 shows the effects of rotating parametric axes for anisotropic
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d e

Figure 7: Comparison of different ways of specifying metric
lengths (a) the original face mesh. (b) face-tensor-based (c)
our method (d) vertex-tensor averaging, triangles not satisfy-
ing metric inequality (e) after re�nement, metric inequality is
satis�ed, but quadrangulation misses some features.

harmonic parameterization of a shape which does not require adding
cones or cuts. Note that the parameterization automatically squeezes
quads to the lines of high curvature: the mesh elements appear to
preserve their orientation, while rotating in the parametric domain.

Comparisons with isotropic quadrangulation.Our pri-
mary comparison is to the mixed-integer quadrangulation of [2]
with no anisotropy. Figure 8, Figure 11, and Figure 12 show feature-
aligned quadrangulations for a number of models.

isotropic PGP anisotropic harmonic

Figure 8: Periodic global parameterization and (unaligned)
harmonic anisotropic parameterization. Normal error distri-
bution is shown in pseudocolor.

For two models, we also compare to the periodic global parame-
terization (PGP) (Figure 8 and Figure 9). We observe that under
some conditions,unalignedanisotropic harmonic quadrangulation
produces better results compared to aligned but isotropic quadran-
gulation.
As our main target application is approximating the original meshes
with semiregular meshes with good visual quality, the ultimate cri-
terion in this case (vs., for example, remeshing for �nite element
simulation) is the appearance of the resulting models. For this rea-
son, we present smoothly shaded images of the remeshed models in
Figure 12, along with a pseudocolor rendering of the pointwise nor-
mal error (dark red corresponds to maximal error, dark blue to no
error). We choose relatively coarse quadrangulations to make the

errors more apparent. The number of facets in the original models,
the number of quads as the fraction of the original model size, and
the number of singularities are summarized in the following table.

model facets reduced to cones
lion head 16674 17% 41
Julius 39168 28% 25
screwdriver 54300 3% 20
Stanford bunny 111364 3.5% 32
rocker arm 20088 8% 26
Omotondo 10000 25% 36
Max Planck 50790 35% 15

We emphasize that our technique aims to make the error distri-
bution more uniform,not to minimize an integral error measure,
hence it is dif�cult to quantify the relative quality of the result by a
single number. In pseudocolor visualizations in Figure 12, one can
observe greater uniformity in pointwise error. A consistent increase
in uniformity is also con�rmed by the plots of the pointwise error
distribution: these plots show, for a given abscissa� , (in percent
of the max possible error in normal), the fraction of vertices with
error above� in log scale. Plots for anisotropic models are in red
and for isotropic in blue. Higher slope corresponds to more even
error distribution.

Sharp features.As Figure 9 demonstrates, anisotropic harmonic
quadrangulation can handle models with sharp features robustly,
even with no feature alignment. The mesh for the fan disk model
has only 8 singularities, i.e., the whole surface is mapped to the sur-
face of the cube. Although for noise-free the quality of the result
is inferior to the one that can be obtained by explicitly constraining
the parameterization to be aligned with sharp edges as described in
[2], for scanned meshes similar to the screwdriver example (Fig-
ure 12) when the edges of the mesh are not aligned with sharp fea-
tures of the underlying geometry.

Figure 9: Quadrangulation of a model with sharp features.
From left to right: the original model, remeshing using PGP,
remeshing using anisotropic harmonic map. Both remeshed
models retain approximately 20% of faces of the original
model. 8 singularities are used for the anisotropic map, i.e.,
the model is parametrized over the surface of a cube.

For certain types of models, it may be highly desirable to preserve
sharp features. For feature-based parameterization, one can explic-
itly integrate perfectly sharp feature edges into the process, by forc-
ing the �eld to be aligned with these edges and forcing one of para-
metric coordinates to be constant along these edges. This typically
requires introducing a suf�cient number of singular vertices.
In the context of our method, one can introduce parameterization
discontinuities along sharp edgeswithoutintroducing extraordinary
vertices, at the expense of introducing collapsed quads on a regular
mesh. Figure 10 shows a case where sharp features were tagged
along the connection of the model to the plane, and degenerate tri-
angles were inserted along these creases. For normal calculations
the creases were treated as internal boundaries.
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Figure 12: Isotropic and anisotropic feature-aligned quadrangulations and error visualization. Error plots show in log scale for a
given abscissa� (in % of max. normal error) the fraction of vertices with error above � .
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Figure 10: Quadrangulation of a model with sharp features,
with additional edges inserted at creases; no singularities are
used. Top: the original model, and our quadrangulation with
25% of faces. Bottom left: a harmonic map quadrangulation
with the same number of faces; Bottom right: the original mesh
in the parametric domain. Note the extremely stretched bands
of triangles: these are thin triangles inserted along the sharp
feature.

8. CONCLUSION
The most appealing features of the proposed method are its re-
markable robustness (even for high aspect ratios, compared to other
metric-based techniques we have experimented with), its simplicity
and its compatibility with a number of other approaches.
As we generate quads with large angles, the resulting meshes are
in general not suitable for solving equations on surfaces, unless the
aspect ratio is limited to a moderate value; even with this restriction
we can still expect a reduction in the number of quads needed for a
given approximation quality.
While we do provide control over maximal aspect ratios, it is far
from a complete solution, especially in cases of rapid edge length
variation.
The method takes advantage of the possibility of discretizing the
shape operator metric using a high-dimensional embedding. We
would like to extend this to approximate embedding discretizations
for arbitrary metric tensors.
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APPENDIX

A. EQ AND OPTIMAL UNIFORM ERROR
Let (u; v) be local coordinates in the parametric plane. The linear
approximation to the surface normal overA(Q) is n0 + r n p ,
wherep is a point in the parametric plane,r n is the Jacobian
of n = n(u; v), andn0 is the normal at the origin of parametric
coordinate system; we assume that the origin is chosen to be at the
point where the quadQ is tangent to the surface, i.e.n0 = nQ . By
de�nition of the shape operatorS, Sfu = � nu andSfv = � n v ,
in other words,Sr f = �r n. We rewrite the expression for the
normal asn0 � Sr fp . Then the pointwise squared error is given
by

E 2
pt = ( n � n0)2 = pT r f T ST Sr fp (7)

We assume that the surface is tangent to the quad at the center, (we
need to expand the quad in two directions to make this true for
an arbitrary tangent point), integratingEpt over the quadQ in the
tangent plane, we obtain

E 2
Q =

1
Area (Q)

Z

Q
(n � n0)2 det r f dudv

=
h4

12
Tr( r f T ST Sr f ) =

h4

12
Tr( ST Sr f r f T )

=
h4

12
Tr( S2M (g) � 1);

(8)

where we usedet r f = Area (Q) andr f = r g � 1 . This quantity
approximates the integral of previously de�ned quad error up to
O(h5) for each quad. LetH = M (g) � 1 .
In general,H cannot be chosen arbitrarily (i.e., for an arbitrary
choice ofH correspondingg may not exist). One can de�ne an
“ideal” H , solving the minimal uniform-error density optimization
problem withH as a free variable, without the constraintH =
M (g) � 1 .
We require the error density (3) to be constant everywhere on a
surface,Tr S2H = � , and minimize� . We constrain the total area
the image of the surface has in the parametric plane (with overlaps
counted multiple times) to be �xed:

Z

A
det r gdA =

Z

A
det H � 1

2 dA:

Then the Lagrange function with multipliers� and� for the con-
strained minimization of� is

� +
Z

A
� Tr( S2M ) + � det H � 1

2 dA:

Computing theL 2-gradient of this expression with respect toH
yields �S 2 + 1

2 �H det H � 3
2 = 0 , i.e.,H = kS � 2 . Substituting

into Tr S2H = � , we getk = �=2, i.e., the scale factor is indepen-
dent ofH .
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