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Subdivision surfaces are popular in animation as a way of smoothing coarse control

meshes. On the other hand, the Computer-Aided Design (CAD) industry typically prefers

the simplicity and predictability of NURBS when constructing high-quality surfaces

for the manufacture of cars and planes. Since a single NURBS patch is capable only of

modeling the topologies of planes, cylinders, and torii, itis complex to use a NURBS

atlas to construct a surface of arbitrary topology that is curvature-continuous everywhere.

While popular subdivision algorithms of low parametric degree, like Catmull-Clark

and Loop subdivision, are not inherently restricted in topology, they su�er from shape

artifacts at so-called \extraordinary vertices". This makes them unattractive for CAD.

Subdivision theory requires a (bi)degree of at least 6 in order for stationary subdivision

to be non-trivially curvature-continuous and mitigate some of these shape artifacts.

We circumvent this restriction by designing a curvature-continuous non-stationary

bicubic subdivision algorithm which has the implementational simplicity of stationary

algorithms. We hope techniques such as ours make subdivision surfaces more attractive for

high-quality constructions in CAD.
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CHAPTER 1
INTRODUCTION

From automobile and plane design to digital movie animationto video and computer

game character design, smooth curves and surfaces play a fundamental role in the design

of objects. Standard Computer-Aided Design (CAD) packages need to represent these

surfaces in an e�cient form that is easy to manipulate algorithmically, and intuitive for

the user to mold into the desired shape. Additionally, such surface representations should

be easy to visualize and render onto the screen.

Smooth surface representations in CAD packages can be largely classi�ed into two

categories: implicit and parametric. Implicit surfaces are de�ned in terms of zero-sets. For

example,x2 + y2 + z2 � 1 = 0 is the implicit representation of the unit sphere. Whilethis

representation is useful to create basic shape and to apply boolean operations, visualizing

and rendering the surface typically requires solving a set of non-linear equations.

The alternative is to use parametric representations. In contrast to its implicit form, a

unit sphere can be represented using three equations in terms of two parameterss and t as

follows.

x(s; t) = cos(s) cos(t); y(s; t) = cos(s) sin(t); z(s; t) = sin( s)

As s is varied from 0 to � and t is varied from 0 to 2� , the points on the surface of the

Figure 1-1. A NURBS surface in a typical CAD package determined by a control net
consisting of all quads and internal vertices of valence 4.
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sphere are generated. A standard form of parametric representation is called Non-Uniform

Rational B-Splines, or NURBS for short. In this case, thex-, y-, and z-coordinates are

represented separately by piecewise rationals. The surface is de�ned by A) a control

mesh, or control net, which for NURBS is a quad mesh with each internal vertex having

valence 4, as shown in Figure1-1; B) two knot sequencesthat determine the extent and

e�ect of the domain, one for each of thes and t parameters; and, C)weightsassociated

with each vertex in the control mesh. Even though boolean operations on NURBS are

not straightforward, NURBS are popular due to their intuitive manipulability and ease

of rendering. However, being based on quad-grid control structures, NURBS are capable

of representing only topological planes, cylinders, or torii. While the theory of NURBS

will not be discussed, a special case of it is important in this study: the uniform B-spline,

with uniformly spaced knots and all weights 1. Surfaces in B-spline form can be converted

directly to closed form, which is useful for analysis. Alternatively, the surface can be

de�ned via an iterative mesh re�nement algorithm, which is easier to generalize. Chapter

2 discusses uniform bi-degree-3 splines in greater detail.

Table 1-1. Various mesh re�nement algorithms (not comprehensive). Quad/triangle is
only C1 over certain edges and isolated points. Except for TURBS, all
produced surfaces are generically onlyC1 at isolated points. The last column
indicates whether or not the algorithm interpolates its control points.

Year Algorithm Smooth Degree Basis Interp.
1978 Catmull-Clark [Catmull and Clark, 1978] C2 bi-3 2 no
1978 Doo-Sabin [Doo and Sabin, 1978] C2 bi-2 2 no
1987 Loop [Loop, 1987] C2 4 4 no
1990 Buttery [ Dyn et al., 1990] C1 N/A 4 yes
1996 Kobbelt [Kobbelt, 1996] C1 N/A 2 yes
1997 Simplest [Peters and Reif, 1997] C1 2 2 no
1998 TURBS [Reif, 1998] Ck bi-(2k + 2) 2 no
2000

p
3 [Kobbelt, 2000] C2 N/A 4 no

2001 4{8 [Velho and Zorin, 2001] C4 6 2 no
2001 Circle preserving [Morin et al., 2001] C2 3 & trig. 2 no
2002 Ternary triangle [Loop, 2002b] C4 4 4 no
2003 Quad/triangle [Stam and Loop, 2003] C2 bi-3, 4 4 , 2 no
2004 4{3 [Peters and Shiue, 2004] C2 4 4 , 2 no
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To address the inherent limitations of NURBS, subdivision surfaces were introduced

simultaneously byCatmull and Clark [1978] and Doo and Sabin[1978]. The two

subdivision surface algorithms are generalizations of B-spline iterative mesh re�nement

rules, supporting arbitrary connectivity and manifold topology. These rules specify where

points are added; how the positions of these points are computed; and how the mesh is

reconnected. After an in�nite iterative application of these subdivision rules, the mesh

converges to a limit surface. Some subdivision algorithms were created speci�cally for

triangular meshes, whereas others were created for quad meshes. Some were created

speci�cally to interpolate the vertices of the control net.Some were designed for tangent

continuity ( C1), and others for curvature continuity (C2). Table 1-1 summarizes several

well-known subdivision algorithms, and is by no means complete. The surface quality of

various C2 algorithms listed is de�cient at certain isolated points, called extraordinary

points, where they are onlyC1. What is considered to be an extraordinary point depends

on the details of each algorithm. Section2.2, for instance, will de�ne the extraordinary

point for Catmull-Clark surfaces and describe the surface behavior in its neighborhood.

The literature on the analysis techniques is enumerated at the end of Section2.2.4.

Various surface construction algorithms were invented or adapted for applicability or

quality. For example, quad/triangle subdivision mentioned in Table 1-1 is a combination

of Catmull-Clark and Loop subdivisions applied to the quad and triangular portions

of the mesh separately. New rules were developed for the boundary between the quad

and triangle meshes, and the behavior of the surface along those edges is onlyC1.

Since Catmull-Clark by itself was designed for quads and hasundesirable shape on

triangle meshes, its combination with Loop's algorithm improves overall surface quality

and the applicability of the subdivision algorithm. Addressing surfaces of revolution,

Morin et al. [2001] designed a subdivision algorithm capable of reproducing circles, which

polynomial algorithms cannot do. This technique reproduces cubic polynomials, circles,

and hyperbolic functions depending on a tension parameter.By tensoring the algorithm

14



on a quad mesh, they obtained a surface that isC2 except at extraordinary points, where

it is C1. While most subdivision algorithms approximately quadruple the number of points

in the mesh after every re�nement, some are speci�cally designed to re�ne slowly: simplest

subdivision [Peters and Reif, 1997] and 4{8 subdivision [Velho and Zorin, 2001] quadruple

every two iterations;
p

3 subdivision [Kobbelt, 2000] increases 9-fold every two iterations.

Slowing the re�nement gives greater control over the size ofthe re�ned mesh. This is

useful for rendering no more than is necessary.

Catmull-Clark and Loop subdivision, the most well-known subdivision algorithms

for quad and triangle meshes, respectively, are known to have unbounded curvature in

the vicinity of the extraordinary point. Many attempts have been made to improve upon

them. Sabin [1991] re-tuned Catmull-Clark so that it yielded surfaces with bounded

curvature. Augsd•orfer et al. [2006] went a step further to minimize Gaussian curvature

variation within the space of bounded curvature algorithms. Various modi�cations have

been made to Loop subdivision to support curvature continuity, albeit with a local at

spot with zero curvature [Prautzsch and Umlauf, 1998, 2000]; bounded curvature with the

surface lying within the convex hull of the control points [Loop, 2002a,b]; and, curvature

control [Ginkel and Umlauf, 2006]. Umlauf [2005] summarized many of these re-tuning

techniques.

Notable constructions that support arbitrary degree of smoothness even at the

extraordinary point include free-form splines [Prautzsch, 1997] and TURBS [Reif,

1998], both of which require degree bi-(2k + 2) to create an everywhere-Ck surface.

Ying and Zorin [2004] created an everywhere-C1 surface using exponential blending

functions between polynomial patches. More recent work byKar�ciauskas and Peters

[2007b, 2008] introduced the concept of guided subdivision also capableof achieving

arbitrary continuity. For C2, they employ an in�nite sequence of bi-degree-6 spline surface

rings to approximate aC2 \guide surface" of good quality. In [Kar�ciauskas and Peters,

2007d], they employ sequences of bicubic spline rings containingan exponentially-increasing

15



number of polynomials to reproduce the guide surface's second order behavior at the

extraordinary point in spite of the low degree of the overallconstruction. Our construction

implicitly also uses bicubic spline surface rings of exponentially-increasing number of

polynomials to achieve curvature continuity; however, this increase comes about naturally

in our algorithm.

A variety of other approaches have been used to improve shapenear extraordinary

points. Peters [2000] approximated Catmull-Clark surfaces with a �nite number of bicubic

patches that join tangent-continuously. As an alternative, Peters [2002] suggested aC2

construction of degree (3; 5). Both these techniques still su�er from shape problems due

to the low degree of the constructions.Loop and Schaefer[2008] achieved curvature

continuity for quad meshes using patches of bi-degree 7 withshape optimization for the

free parameters.Kar�ciauskas and Peters[2007c] used the concepts of guided subdivision to

construct a C2 surface with a �nite number of bi-degree-6 patches. [Levin, 2006] perturbed

Catmull-Clark surfaces using polynomial-square-root blending functions between local

polynomial patches. In the same vein,Zorin [2006] perturbed Loop subdivision surfaces to

be C2 using a blending function that was itself a subdivision surface.

A B

Figure 1-2. Polar con�guration on A) �nger tips and B) the top of the mushroom.

Many of the surface construction algorithms mentioned above are complex or

su�er in shape near high-valence vertices.Kar�ciauskas and Peters[2007] recognized

one commonly-occurring con�guration of high valence in quad-dominant meshes:the

polar con�guration, which is the focus of this study. The polar con�guration consists

16



of a high-valence central vertex { thepolar vertex{ in the middle of a triangle fan

surrounded by a quad grid neighborhood. This con�guration occurs naturally at the

ends of elongated objects like tips of �ngers, and in the latitude/longitude connectivity

of the sphere (Figure1-2), and it is structurally far simpler than the neighborhood of

Catmull-Clark extraordinary points, as we show in Section2. Catmull-Clark on polar

con�gurations results in macroscopic oscillations in the polar neighborhood. Treating polar

as a special case gives good results, even when the central valence is very high (Figure

2-6). Kar�ciauskas et al. [2006] adapted guided subdivision to polar con�guration to create

C2 polar jet subdivision, which employs a control net structure to make spline surface

rings of degree (6; 5). Kar�ciauskas and Peters[2007a] introduced very simple bicubic

C1 subdivision algorithm with bounded curvature, which was subsequently adapted by

Myles et al. [2008] to be compatible with Catmull-Clark subdivision. Myles et al. [2008]

also o�ered aC1 bicubic NURBS patch construction with bounded curvature tocover the

neighborhood of the polar con�guration.

There is no accepted mathematical de�nition of surface quality. For simulation, it is

often useful to have well-de�ned curvatures. Additionally, the introduction of curvature

continuity tends to improve visual quality of the modeled surface. Subdivision theory

[Peters and Reif, 2008] states that Catmull-Clark subdivision cannot be re-tunedto be

non-trivially C2 at the extraordinary point with degree less than bi-6. In this study,

we sidestep the assumptions underlying this theorem to takeadvantage of the natural

subdivision structure of polar con�gurations to create aC2 algorithm that has degree only

bi-3. We also show that our simple subdivision algorithm yields surfaces with high visual

quality and good curvature distribution.
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CHAPTER 2
GENERALIZATIONS OF UNIFORM BICUBIC SPLINES

2.1 Uniform B-Spline Representation

We introduce notation and de�nitions to simplify the discussion.

� For integersn,
P n

h is an alternative notation for
P n� 1

h=0 . For setsS,
P S

� is an
alternative notation for

P
� 2 S.

� Z is the set of integers, andZ n is the integers modulon. R is the set of reals.R 1 is
R modulo 1. Z n is the strictly increasing sequence of integers inZ n .

� An a�ne combination is a linear combination where the weights add to 1. Aconvex
combination is an a�ne combination where the weights are positive.

2.1.1 Univariate

A detailed treatment of the B-spline form can be found in [Prautzsch et al., 2002].

A piecewise polynomial in B-spline form is de�ned by a sequence ofcontrol points that

de�nes the shape, and a uniformly-spaced knot sequence thatde�nes the domain. The

piecewise linear interpolant for a given ordering of control points is known as thecontrol

polygon (see Figure2-1). A univariate cubic (i.e. degree 3) uniform splinef : R ! R

with n control points b := [ b0; b1; : : : ; bn� 1] requiresn + 4 uniformly-spaced knots

t := [ t0; t1; : : : ; tn+3 ] and is de�ned by

f (t) :=
nX

i

bi N i (t);

where then cubic B-spline basesN i (t) are

N i (t) :=
1
6

8
>>>>>>>>>><

>>>>>>>>>>:

ui (t)3 if t 2 [t i ; t i +1 ]

� 3ui +1 (t)3 + 3ui +1 (t)2 + 3ui +1 (t) + 1 if t 2 [t i +1 ; t i +2 ]

3ui +2 (t)3 � 6ui +2 (t)2 + 4 if t 2 [t i +2 ; t i +3 ]

(1 � ui +3 (t))3 if t 2 [t i +3 ; t i +4 ]

0 otherwise

ui (t) :=
t � t i

t i +1 � t i
:

(2{1)

While the spline is technically de�ned on all ofR , it is restricted for practical purposes
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A B

Figure 2-1. Univariate uniform cubic spline. A) A cubic spline f (t) with control points
b = [1; 3; 1; 2; � 1] (red) and knots t = [ � 1; 0; 1; 2; 3; 4; 5; 6; 7] is the sum of
uniform B-spline bases scaled by their respective control points (blue, green,
magenta, cyan). B) An equivalent de�nition using iterative control polygon
re�nement.

to t 2 [t3; tn ], as in Figure2-1, where at least four non-zero bases overlap. The basis

functions are non-negative and sum to one in this interval, implying that each point on the

spline is a convex combination of the control points. This yields two important geometric

properties of B-splines.

� A�ne invariance: Applying an a�ne transformation to the control polyhedron
applies it to the transformation spline as well.

� Convex hull property: A parametric curve in B-spline form always lies in the
convex hull of its control points.

Uniform cubic B-splines also have built-in second-order continuity so that adjacent

polynomial pieces joinC2.

The t-coordinate associated with each control pointb i is called theGreville abscissa

t �
i and is de�ned, in general, viat �

i := 1
d

P d
j t i + j +1 , whered is the degree of the spline. For

uniform cubics, this simpli�es to t �
i = t i +2 . It will be useful later to index control points by

their Greville abscissae when the knot sequence is chosen sothat t �
i = i

n . To this end, we

de�ne the operator G

Gb := f t �
i gi 2 Z n

; (2{2)
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and the bracketed fractional indexing notation.

b[t �
i ] = b[ i

n ] := bi ; N[t �
i ]

(t) = N[ i
n ](t) := N i (t): (2{3)

Using this notation, our spline is equivalently de�ned as

f (t) :=
GbX

�

b[� ]N [� ](t):

One can similarly de�ne periodic uniform cubicsf : R 1 ! R , requiring the knot

sequence to lie withinR 1. Since the knot sequence cycles around, we need only specifyn

knots { e.g. t = 1
n Z n { and assume by convention that the �rst control point has Greville

abscissa 0.

The B-spline form can alternatively be de�ned via a control polygon re�nement

procedure as illustrated in Figure2-1B. The once-subdivided control pointsb1 :=

[b1
1; b1

2; : : : ; b1
2n� 3] are computed from the original control pointsb0 := [ b0

0; b0
1; : : : ; b0

n� 1] via

the following equations.

b1
2i =

1
8

b0
i � 1 +

6
8

b0
i +

1
8

b0
i +1 ; b1

2i +1 =
1
2

b0
i +

1
2

b0
i +1 (2{4)

Applying this re�nement procedure ad-in�nitum converges to the spline curve.

2.1.2 Tensor-product bivariate

The B-spline bases can be easily generalized to surfaces by tensoring the univariate

bases, so that thebi-3 (i.e. bicubic, bi-degree-3, or degree (3,3)), surfacef (s; t) is de�ned

as

f (s; t) :=
nsX

i

n tX

j

bij N s
i (s)N t

j (t);

where the spline is de�ned by thens � nt control meshb of control points, and two knot

sequencess := [ s0; s1; : : : ; sn+3 ] and t := [ t0; t1; : : : ; tn+3 ] which de�ne the B-spline bases

N s
i (s) and N t

j (t), respectively. The Greville abscissa of a control pointbij is a pair (s�
i ; t �

j )
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instead of a single real. Figure1-1 illustrates such a uniform bi-3 spline in a typical CAD

environment.

A B

Figure 2-2. Generalizations of mesh connectivity. A) A quad-only generalization to mesh
connectivity allows vertex valences other than 4. B) Polar mesh connectivity
arrives naturally when many control lines along the same tensor direction meet
at a singularity.

A C

B

Figure 2-3. Commutativity of regular B-spline subdivision. Bi-3 spline subdivision A) in
one direction followed by B) the other, or C) simultaneous re�nement as in
Catmull-Clark.

The surface can also be de�ned using a mesh re�nement procedure. The control mesh

may be subdivided in either tensored direction independently, to yield the same surface

in closed form. Figure2-3 illustrates this procedure on a parametric spline, where the

mesh is (A) re�ned strictly in one direction twice followed by (B) the other one twice.

Alternatively, one can tensor the subdivision masks so thatone may (C) directly subdivide

in both directions twice, converting each original quad into four re�ned ones after every

tensored subdivision.
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2.2 Catmull-Clark and Bi-3 Polar Subdivision

2.2.1 Generalizations of quad grid meshes

Quad-grid control meshes are limited to representing the topology of planes, cylinders,

and torii. Generalizing the mesh connectivity to allow arbitrary-valence vertices and

polar con�gurations (Figure 2-2) admits meshes encoding arbitrary surface topology. The

B-spline quad-grid connectivity is called theordinary case. The extraordinary caseconsists

of a quad neighborhood with anextraordinary vertexof valence6= 4, and its neighboring

quads are calledextraordinary quads. The polar con�guration, as de�ned previously,

consists of a centralpolar vertexof arbitrary valence � 3, surrounded by a triangle fan

within rings of regular quads (Figure2-2B).

While the utility of arbitrary valences may be obvious, an appreciation for polar

con�gurations requires more observation. Figure1-2 already demonstrates their utility on

certain meshes, but we will justify treating polar con�gurations specially when examining

subdivision surfaces in the following section.

2.2.2 Subdivision as re�nement operations

The Catmull-Clark subdivision algorithm Catmull and Clark [1978] takes an arbitrary

input mesh and subdivides it to produce a denser mesh on whichthe algorithm can again

be applied. The limit surface corresponding to this sequence of evermore re�ned meshes is

called the Catmull-Clark (limit) surface. For simplicity of discussion, we will assume closed

meshes { i.e. those with no boundaries.

Figure 2-4. One step of Catmull-Clark re�nement converts a mesh to all quads.

An application of the Catmull-Clark subdivision procedureconverts every face into

multiple quads by:

1. splitting every edge into two by the introduction of a new vertex (edge vertex),
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2. introducing a new vertex at the middle of the face (face vertex), and

3. connecting the face vertices to their neighboring edge vertices.

See Figure2-4 for the end result on three di�erent polygons. Subdivision splits a face of

sizen into n quads and creates ann-valent vertex at the center. Since the mesh facets are

four-sided after one re�nement, all subsequent subdivisions quadruple the size of the mesh.

The new points are a�ne combinations of their neighbors and the old vertices are modi�ed

using a�ne combinations of their old neighbors as well. Catmull-Clark subdivision,

demonstrated in Figure2-5A, can hence be thought of (and was originally derived) as a

generalization of Figure2-3C, where both directions of the mesh are subdivided in a single

step.

A

B

radial circular 3�

Figure 2-5. A) Catmull-Clark subdivision splits every quaddirectly into four, using
special rules in the vicinity of extraordinary vertices, like the 3-valent ones on
the cube. B) Bi-3 polar subdivision re�nes strictly in the radial direction the
desired number of times (thrice here), and �nally in the circular direction to
achieve the same granularity as Catmull-Clark.

The exact re�nement weights are not relevant in this discussion, and are omitted.

However, it is worth noting that these weights depend only onthe local connectivity of the

control mesh. The weights are said to bestationary. Additionally, the connectivity is also

stationary, in that the local connectivity around the extraordinary vertex has the same
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structure as before { a valencen vertex surrounded by quads with all other valences being

4. Subdivision schemes with stationary weights and connectivity are themselves said to be

stationary.

Bi-3 polar subdivision [Kar�ciauskas and Peters, 2007a; Myles et al., 2008] can be

thought of as generalizing Figure2-3(A-B), where subdivisions happen strictly in one

direction followed by the other one. We refer to the direction along the control lines

emanating radially from the polar vertex as theradial direction, and the periodic direction

as thecircular direction. The limit surface is de�ned in this case by applying subdivision

in the radial direction ad in�nitum, followed by subdividin g in the circular direction.

However, for the purposes of approximating the limit surface with the mesh, we subdivide

only a �nite number of times in the radial direction before weswitch to the circular

direction as illustrated in Figure 2-5B. Bi-3 polar subdivision is stationary, and its

subdivision weights are irrelevant for this discussion. Wewill instead detail and analyze a

slightly more complex version of this algorithm in Section3.

A B C

Figure 2-6. Even when the polar con�guration A) is convex, the Catmull-Clark
subdivision surface B) has unseemly ripples, while bi-3 polar subdivision C)
yields predictable surfaces.

As Figure 2-6 demonstrates, applying Catmull-Clark to a convex polar con�guration

results in macroscopic ripples that are clearly not speci�ed by the control nets. However,

treating polar con�gurations specially yields predictable surfaces with good behavior

despite a high valence polar vertex. This justi�es considering the polar con�guration as a

separate case.
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2.2.3 Subdivision as piecewise polynomials

While uniform splines can be written out in closed form, Catmull-Clark and bi-3

polar subdivision surfaces are not as straightforward. As Figure 2-7 demonstrates, at

any re�nement level, the limit surface near extraordinary vertices and polar vertices

is not directly available. However, subdividing once reveals a regular ring of quads,

which undergo uniform bi-3 subdivision in subsequent re�nements. The surface de�ned

by this ring can hence be written out in closed form. Therefore, near extraordinary

vertices and polar vertices, the surface consists of anin�nite sequence ofspline surface

rings approaching a limit point. In the Catmull-Clark case, we call this limit point an

extraordinary point, while in the polar case, it is called apole.

A
? ?

??
?

? ?
??

? ...?

B ...? ?
? ?

?

?
? ?
? ?

?

?
?

Figure 2-7. The in�nite sequence of spline rings of A) Catmull-Clark and B) bi-3 polar
subdivision. Each subdivision reveals additional rings ofregular quads,
representing bi-3 polynomial patches, around the extraordinary point.

Observe also from Figure2-7 that the boundary of each spline ring around a

Catmull-Clark extraordinary point contains as many corners as the valence of the

extraordinary vertex. As the extraordinary valence approaches in�nity, the boundary

consists of countably in�nite corners. On the other hand, inthe polar case, the boundary

is smooth: in a perfectly symmetric case, the boundary approaches a circle as the valence

approaches in�nity. We exploit this behavior of the polar con�guration in the new

subdivision algorithms we design.
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2.2.4 Behavior around and at the extraordinary points

Since the in�nite sequence of spline rings de�ning the surface near extraordinary

points and poles are themselvesC2, the surface isC2 away from these vertices. The

behavior at the extraordinary points and poles requires a more advanced analysis of these

spline sequences. Even though subdivision surfaces have been around for 30 years, only

within the last 15 years were the mathematical tools for higher order analysis developed to

maturity. In a landmark paper, Reif [1995] set a general framework to analyze arbitrary

subdivision surface algorithms near and at the extraordinary point. Subsequent work

by Prautzsch and Reif developed su�cient conditions and polynomial degrees for

Ck continuity by examining the in�nite sequence of spline rings [Prautzsch and Reif,

1999b,a]. Zorin [2000] instead derived conditions based on the analysis of certain

\universal" surfaces that are determined by the subdivision scheme of interest. Numerous

papers have analyzed the behavior of subdivision surfaces around extraordinary points

[Peters and Umlauf, 2000; Sabin et al., 2003; Peters and Reif, 2004; Kar�ciauskas et al.,

2004; Reif and Peters, 2005]. The recent book [Peters and Reif, 2008] summarizes and

extends the core results of the papers above on the theory of subdivision.

Stam [1998] derived a constant-time algorithm for the evaluation of points and

derivatives at parameter values arbitrarily close to the extraordinary point, and

Boier-Martin and Zorin [2004] showed that a more canonical parameterization than

the one used by Stam was needed to be able to always compute thederivatives at the

extraordinary point.

It is now well-known that Catmull-Clark surfaces can haveunbounded curva-

ture near extraordinary points of valence not equal to 4 even though they areC1

[Peters and Umlauf, 2000]. On the other hand, bi-3 polar subdivision [Kar�ciauskas and Peters,

2007a; Myles et al., 2008] was derived with bounded curvature in mind and tends to give

predictable shapes in its areas of applicability. The purpose of this study is to go beyond

bounded curvature toC2, while still having a simple subdivision algorithm.
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CHAPTER 3
RADIAL TAYLOR SUBDIVISION (RTS)

In this chapter, we will analyzeradial Taylor subdivision, a slightly more complex

variant of bi-3 polar subdivision that also has bounded curvature at the pole. Trivial

modi�cations of radial Taylor subdivision will yield subdivision algorithms that are C2 at

the pole as well.

3.1 Notation and Labeling

The underlying data structure on which we operate is thepolar con�guration which

consists of a central triangle fan surrounded by rings of ordinary quads (see Figure3-1).

The central vertex of the triangle fan is called thepolar vertex. The i -link (i = 0; 1; 2; : : :)

of a polar con�guration is the circular chain of vertices that is i edges away from the polar

vertex. The 0-link consists of only the polar vertex itself.The i -ring (i = 0; 1; 2; : : :)

consists of all the vertices that are no more thani edges away from the polar vertex.

While the subdivision algorithms use special rules only in the 1-ring of the polar vertex,

we assume for analysis that a polar con�guration constitutes the 5-ring of the polar vertex.

As illustrated in Figure 3-1, the polar con�guration is denoted byq and its valence

(i.e. the valence of its polar vertex) isn. qi := [ qi; 0; qi; 1; : : : ; qi;n � 1]T denotes thei -link

of the polar con�guration, and qij is the j th control point (rotating counter-clockwise,

modulo n) on this i -link. For j 2 Z n , the j -spokeis the vector q� ;j := [ q0;0; q1;0; : : : ; q5;0]T .

Counting the polar vertex q0j = q00 repeatedly,q has 6n vertices. We can enumerate all

q00
q0j

q1j q2j q3j q4j q5j

Figure 3-1. A polar con�guration consists of a total of 6n control points de�ning the
5-ring of a polar vertex (q00, which is countedn times) of valencen.
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rr
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00 1

11

22 44

(G0q0) (r; � ) (G1q1) (r; � )

Figure 3-2. Them-times subdivided polar con�gurationqm de�nes a cubic spline ring
(Gm qm ) (r; � ) (orange) via (3{1). The radial parameter shrinks by half after
each subdivision so thatr 2 [2; 4] for G0q0(r; � ) and r 2 [1; 2] for (G1q1) (r; � ).

these vertices as the column vector

q := [ q0;0; q1;0; : : : ; q5;0; q0;1; q1;1; : : : ; q5;1; : : : ; q0;n� 1; q1;n� 1; : : : ; q5;n� 1]T

We will extract the spline rings described in Section2.2.3 in such a way that each

control point qij has the Greville abscissajn in the circular direction. This allows us

to simplify generalizations to in�nite valences and non-stationary valence by using the

valence-independent fractional indexing notation introduced in (2{3): qi; [ j
n ] := qij . Sincej

in qij is modulo n, � in qi; [� ] is modulo 1.

While in practice, each mesh vertex lies inR

3, our analysis is the same as ifqij 2 R

since subdivision works on each coordinate independently.qm is the polar con�guration

after m subdivisions. Omission of the superscript refers to the initial data: q := q0. nm is

the valence ofqm , and n := n0.

The limit surface of the subdivision procedure is de�ned by an in�nite sequence of

spline rings that form a decomposition of the surface (see Figures2-7 and 3-2). Each

spline ring is the periodic uniform spline de�ned by the �ve outer links of qm . More

precisely,
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� (radial)
�

N (m)
i (r ) is the i th cubic B-spline basis with knots� m [� 1; 0; 1; 2; 3; 4; 5; 6; 7],

where � := 1
2; and

� (circular) for n � 3,
�

N (n)
j (� ) is the j th uniform periodic cubic B-spline basis with

knots 1
n Z n .

The spline ring corresponding toqm is a mapGmqm : [2� m ; 4� m ] � R 1 ! R , de�ned by

the B-spline control pointsqm
ij , with i 2 f 1; 2; 3; 4; 5g and j 2 Z n such that

(Gm qm ) (r; � ) :=
5X

i =1

nX

j

qm
ij

�
N (m)

i (r )
�

N (nm )
j (� ); (3{1)

where � := 1
2 , indicating that the radial parameter of each spline ring shrinks by half after

every subdivision as illustrated in Figure3-2. As nm ! 1 , the i -link converges to acurve

qm
i; [� ] with � 2 R 1, and Gm qm simpli�es to

(Gm qm ) (r; � ) :=
5X

i =1

Z

R 1

qm
i; [� ]

�
N (m)

i (r )d�: (3{2)

Observe also thatGm qm is linear with respect toqm .

The polar limit surface x : [0; 4] � R 1 ! R ( R

3 in practice) in polar parameterization

is de�ned piecewise in terms of these rings so that

x(r; � )
�
�
r 2 [2� m ;4� m ]

:= ( Gmqm ) (r; � ): (3{3)

and x(0; � ) is the unique limit point, called the pole. The di�erence between our polar

parameterization and the conventional one is that our circular direction is parameterized

by R 1 instead of R 2� for notational convenience. The operatorL converts a polar

con�guration q to its parameterized limit surface:L (q) := x.

We propose three alternative constructions forx in this study that build upon

each other, and show that the latter two are curvature continuous at the pole. To avoid

ambiguity, we will superscript x and L by the name of the subdivision algorithm they

represent { i.e. L RTS (q) := xRTS as de�ned in Section3.2.
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The operator Ĝm is a simpler version of the operatorGm that works strictly in the

radial direction. For some vectoru 2 R

6, Ĝm u : [2� m ; 4� m ] ! R is the cubic spline de�ned

by the B-spline control pointsu i , with i 2 f 1; 2; 3; 4; 5g:

�
Ĝm u

�
(r ) :=

5X

i =1

u i
�

N (m)
i (r ): (3{4)

Like Gm , Ĝm is also linear with respect to its parameteru.

To simplify notation, we additionally de�ne

c� := cos (2�� ) and s� := sin (2�� ) :

The fraction � can also be represented as a ratio so that

cj :n := cos
�

2�
j
n

�
and sj :n := sin

�
2�

j
n

�
:

3.2 Radial Taylor Subdivision (RTS) De�nition

De�nition 1 (Radial Taylor subdivision). Radial Taylor subdivision, or RTS, re�nes an

n-valent polar con�guration qm to the n-valent polar con�guration qm+1 de�ned by

qm+1
00 := (1 � a )qm

00 +
a

n

nX

h

qm
1h (3{5)

qm+1
1j := (1 � ^

b 0)qm
00 +

nX

h

b h� j qm
1h (3{6)

qm+1
2j := c qm

1j + (1 � c )qm
2j +

nX

h

d h� j qm
1h (3{7)

qm+1
3j :=

1
2

qm
1j +

1
2

qm
2j qm+1

4j :=
1
8

qm
1j +

6
8

qm
2j +

1
8

qm
3j

qm+1
5j :=

1
2

qm
2j +

1
2

qm
3j (3{8)

where

b j :=
1
n

�
^

b 0 + cj :n +
1
2

c2j :n +
1
8

c3j :n

�
; (3{9)

^
b 0 :=

1
2

; a := ^
b 0 �

1
4

; c :=
11
12

; d j := �
1

6n
cj :n : (3{10)
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...

...

...

...

...

...

1� a

a =n

a =n

a =n

1� ^
b 0 b 0

b 1

b n� 1

c + d 0

d 1

d n� 1

1� c 1
2

1
2

Figure 3-3. Radial Taylor subdivision rules. These masks show how to compute each
vertex (� ) on the re�ned mesh (light gray, dashed) based on the old mesh (dark
gray, vertices as� ). The special radial subdivision rules for RTS are isolatedto
the triangle fan at the center of the polar con�guration. Further out, standard
cubic rules are applied.

The limit surface is parameterized byxRTS , de�ned by the spline ringsGmqm de�ned in

(3{3).

The subdivision rules of RTS are illustrated in Figure3-3. It follows by de�nition

that nm = n. Sinceqm+1
3j , qm+1

4j , qm+1
5j are computed via uniform cubic spline subdivision,

Gm qm de�nes a subset ofxRTS . The re�nement weights for bi-3 polar subdivision are

identical to those of RTS, except that it uses uniform cubic subdivision for qm+1
2j . As

was the case for bi-3 polar subdivision [Kar�ciauskas and Peters, 2007a], we assume, that

the polar valencen � 5. This assumption is not applicable to the other two subdivision

algorithms, RTS1 and C2PS, that we de�ne later.

RTS can more compactly be written in terms of matrix multiplication:

qm+1 = Aqm ; (3{11)

whereA is a 6n � 6n matrix. Since the subdivision algorithm is rotationally symmetric

around the polar vertex, our enumeration of the control points in qm allows us to write A
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in block circulant form, distributing evenly the contribution of the polar vertex amongst

its n di�erent labels qm
0j , j 2 Z n .

A :=

2

6
6
6
6
6
6
6
4

A0 A1 � � � An� 1

An� 1 A0 � � � An� 2

...
. . .

...

A1 � � � An� 1 A0

3

7
7
7
7
7
7
7
5

where

A0 :=

2

6
6
4

(1� a )=n a =n 0 0 0 0
(1� ^

b 0 )=n b 0 0 0 0 0
0 c + d 0 1� c 0 0 0
0 1=2 1=2 0 0 0
0 1=8 3=4 1=8 0 0
0 0 1=2 1=2 0 0

3

7
7
5 ; A j :=

2

6
4

(1� a )=n a =n 0 0 0 0
(1� ^

b 0 )=n b j 0 0 0 0
0 d j 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3

7
5 ; for j 6= 0:

Only the �rst 3 � 3 block of the subdivision matrix has non-standard weights,while the

rest is merely the application of uniform cubic spline subdivision in the radial direction.

Nevertheless, the entire 6� 6 matrix is required to de�ne the spline rings for analysis.

3.3 Analysis

Using tools summarized in [Peters and Reif, 2008], we analyze RTS the subdivision

limit by examining the limit

lim
m!1

Gm (qm ) = lim
m!1

Gm (Amq) (3{12)

of the sequence of spline rings de�ningxRTS near the pole. Section3.3.1examines the

spectrum ofA that motivates the choice of its entries. Section3.3.2 then reformulates RTS

in eigenspace to derive, in Section3.3.3, an expansion of the dominant terms at the pole

and conclude that in the limit n ! 1 , the limit surface is C2 at the pole.

3.3.1 Spectral analysis of RTS

The subdivision algorithm (not necessarily the surface) isrotationally symmetric and

periodic such thatqm
i;j + n = qm

ij . This suggests that a Fourier transform in the circular

direction may factor out the radial and circular behavior ofthe subdivision algorithm

to aid our analysis. In other words, since the subdivision matrix A is block circulant
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due to the rotational symmetry of RTS, we can diagonalize it using the discrete Fourier

transform. The complex Fourier block matrix

F := ( ! � jk
n I ) j;k 2 Z n =

2

6
6
6
6
6
6
6
6
6
6
4

I I I � � � I

I ! � 1
n I ! � 2

n I � � � ! 1
n I

I ! � 2
n I ! � 4

n I � � � ! 2
n I

...
...

...
. . .

...

I ! 1
n I ! 2

n I � � � ! � 1
n I

3

7
7
7
7
7
7
7
7
7
7
5

(3{13)

where ! := exp
�

2�
p

� 1
n

�
and I is the 6� 6 identity matrix. It can easily be veri�ed that F

is almost orthogonal:

F � 1 =
1
n

F � =
1
n

(! jk
n I ) j;k 2 Z n ;

whereF � is the Hermitian adjoint (conjugate transpose) ofF . An important property

that is exploited later is that for k > 0, the kth and n � kth block columns ofF � 1 are

complex conjugates of each other. We can now block diagonalize A via

Â := F AF � 1 =

2

6
6
6
6
6
6
6
4

Â0 0 � � � 0

0 Â1 0
...

. . .
...

0 � � � 0 Ân� 1

3

7
7
7
7
7
7
7
5

; Âk :=
nX

j

! � jk A j ;

where

Â0 =

2

6
6
4

1� a a 0 0 0 0
1� ^

b 0 ^
b 0 0 0 0 0

0 c + ^
d 0 1� c 0 0 0

0 1=2 1=2 0 0 0
0 1=8 3=4 1=8 0 0
0 0 1=2 1=2 0 0

3

7
7
5 ; Âk = Ân� k =

2

6
6
4

0 0 0 0 0 0
0 ^

b k 0 0 0 0
0 c + ^

d k 1� c 0 0 0
0 1=2 1=2 0 0 0
0 1=8 3=4 1=8 0 0
0 0 1=2 1=2 0 0

3

7
7
5

^
b k :=

nX

j

! � jk
b j ; ^

d k :=
nX

j

! � jk
d j :

Note that this re-de�nition of ^
b 0 is consistent with its usage in the de�nition (3{9) of b j .

Consequently,

33



^
b k =

8
>>>>>>>>>><

>>>>>>>>>>:

1
2 if k = 0

1
2 if k 2 f 1; n � 1g

1
4 if k 2 f 2; n � 2g

1
16 if k 2 f 3; n � 3g

0 otherwise

and ^
d k =

8
><

>:

� 1
12 if k 2 f 1; n � 1g

0 otherwise

Âk is called thekth Fourier block of Â and encodes the action of RTS on thekth frequency

mode when going around the polar vertex. For instance,̂A0 alone determines the e�ect

of RTS when each control pointqij is independent of the circular indexj . This includes

polar con�gurations sampled from a constant function or a parabola.

Since the eigenvalues and eigenvectors ofA and Â are closely related by the Fourier

transform, we use a similar notation for spectral analysis.

� `0; `1; : : : ; `6n� 1 are the eigenvalues of the subdivision matrixA (and alsoÂ) in
non-increasing order of magnitude:j`0j � j `1j � : : : � j `6n� 1j. Equal eigenvalues are
listed once for each multiplicity and treated separately.

� � k is the index of Fourier blockÂ � k contributing eigenvalue`k , chosen so that
`k1 = `k2 and k1 < k 2 imply � k1 < � k2 .

� vk (respectively,wk) is the 6n-dimensional right (respectively, left) real eigenvector
of A corresponding to eigenvaluèk .

� v̂k (respectively, ŵk) is the 6-dimensional right (respectively, left) eigenvector of
the Fourier block Â � k , corresponding to eigenvaluèk . v̂k is also called aradial
eigenvector.

We abuse the caret (^) notation to represent objects or functions in the Fourier domain,

even if they do not directly arrive via a Fourier transform. For example, as seen shortly in

(3{14), the operator Ĝm (see (3{4)) de�nes the radial limit curve of v̂k in a manner similar

to Gm de�ning the limit surface x.

As summarized in Table3-1, we have

(`0; `1; `2; `3; `4; `5) = (1 ; �; �; �; �; � )
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Table 3-1. The dominant spectral behavior of̂A. The left (ŵk) and right ( v̂k) eigenvectors
are normalized so that the related vectorswk and vk satisfy wT

k1
vk2 = � k1k2 .

Fourier eigen-

k block (� k) value (`k) vector (right) ( v̂T
k ) vector (left) ( ŵT

k )
0 0 1 [1; 1; 1; 1; 1; 1] 1

3 [2; 1; 0; 0; 0; 0]
1 1 1=2 [0; 1; 2; 3; 4; 5] [0; 2; 0; 0; 0; 0]
2 n � 1 1=2 [0; 1; 2; 3; 4; 5] [0; 2; 0; 0; 0; 0]
3 0 1=4 1

3 [� 1; 2; 11; 26; 47; 74] [� 1; 1; 0; 0; 0; 0]
4 2 1=4 1

3[0; 2; 11; 26; 47; 74] [0; 3; 0; 0; 0; 0]
5 n � 2 1=4 1

3[0; 2; 11; 26; 47; 74] [0; 3; 0; 0; 0; 0]

with � := 1
2 and � := � 2 = 1

4. The rest of the eigenvalues are real and positive with

magnitude strictly less than`5. The eigenvalues̀ 0 = 1 and `3 = � are from Â0;

`1 = `2 = � are from Â1 and Ân� 1; and the �nal two `4 = `5 = � are from Â2 and

Ân� 2. In order for these �ve important Fourier blocks to exist, the valencen must be at

least 5, justifying this assumption.

SinceA is an operation on polar con�gurations, the eigenvectorsvk of A are also

polar con�gurations. The eigensplineeRTS
k : [0; 4] � R 1 ! R is the limit surface L (vk) of

these polar con�gurations. Theradial eigensplineêk : [0; 4] ! R is the limit curve of radial

eigenvectorv̂k as de�ned by the decomposition

êk(r )
�
�
r 2 [2� m ;4� m ]

:=
�

Ĝm

�
Âm

� k
v̂k

��
(r ): (3{14)

Figure 3-4 illustrates the relationship, for example, betweenv3, v̂3, eRTS
3 , and ê3.

Let � := diag( `0; `1; : : : ; `6n� 1) be a diagonal matrix of the eigenvalues ofA

(respectively Â), and V̂ be a matrix whose columns enumerate the corresponding right

eigenvectors (of any scale) of̂A, so that ÂV̂ = V̂ �. Then,

ÂV̂ = V̂ �

) F AF � 1V̂ = V̂ � ) A(F � 1V̂ ) = ( F � 1V̂ )
| {z }

VC:=

�

) AVC = VC� ; (3{15)
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A. n = 6 B. n ! 1

Figure 3-4. Eigenvectorv3 is the n-valent polar con�guration (black mesh/curves)
de�ning the eigensplineeRTS

3 (blue and red surface). The corresponding radial
eigenvectorv̂3 (indicated by� ) de�nes the radial eigenspline ^e3 (blue and red
curve). When n ! 1 , then ê3(r ) = eRTS

3 (r; 0).

implying that the columns of VC are (complex) eigenvectors ofA. Since the Fourier

blocks Âk and Ân� k are identical and the corresponding pairs of block columns of F � 1 are

complex conjugate, eigenvalues from these Fourier blocks are associated viaVC = F � 1V̂

with pairs of complex conjugate eigenvectors ofA. The real eigenvectorsvk of A can hence

be computed as the real and imaginary portions of these complex eigenvectors:

(vk) ij := ( v̂k) i opk

�
j
n

�
; opk(� ) :=

8
><

>:

c� k � if � k � n=2

� s� k � otherwise
(3{16)

wherek 2 Z 6n , i 2 Z 6, and j 2 Z n . According to Table 3-1, (op0(� ); op1(� ); : : : ; op5(� )) =

(1; c� ; s� ; 1; c2� ; s2� ) : The eigensplineeRTS
k inherits the tensored nature ofvk .

Lemma 1. For any f : R ! R , the operatorBn : f 7!
P n

j f
� j

n

� �
N (n)

j uses uniform

samples on a functionf as the control points of a periodic spline. Then, the eigenspline

eRTS
k decomposes according to

eRTS
k (r; � ) = êk(r ) Bnopk (� ) (3{17)
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Proof. For r 2 [2� m ; 4� m ],

eRTS
k (r; � )

(3{3 )
= ( Gm vm ) (r; � )

(3{1 )
=

(3{11 )

5X

i =1

nX

j

(Am v)ij
�

N (m)
i (r )

�
N (n)

j (� )

=
5X

i =1

nX

j

`m
k v ij

�
N (m)

i (r )
�

N (n)
j (� )

(3{16 )
=

5X

i =1

nX

j

`m
k (v̂k) i opk

�
j
n

�
�

N (m)
i (r )

�
N (n)

j (� )

=
5X

i =1

nX

j

�
Âm

� k
(v̂k)

�

i
opk

�
j
n

�
�

N (m)
i (r )

�
N (n)

j (� )

=

 
5X

i =1

�
Âm

� k
(v̂k)

�

i

�
N (m)

i (r )

!  
nX

j

opk

�
j
n

�
�

N (n)
j (� )

!

(3{4 )
=

�
Ĝm

�
Âm

� k
(v̂k)

��
(r ) Bnopk (� )

(3{14 )
= êk(r ) Bnopk (� )

Lemma 1 shows that the block diagonalization factors the radial from the circular.

From this formulation, it is also obvious that eRTS
k is periodic in � with a period of 1

� k
,

which is a direct consequence of̂vk having frequency mode� k . Eigensplines and radial

eigensplines also inherit the scaling property of eigenvectors, in that for �r = �r ,

êk(�r )
�
�
r 2 [2� m ;4� m ]

= êk(�r )
�
�

�r 2 [2� m +1 ;4� m +1 ]

(3{14 )
=

�
Ĝm+1

�
Âm+1

� k
v̂

��
(�r ) = `k

�
Ĝm+1

�
Âm

� k
v̂

��
(�r )

= `k

�
Ĝm

�
Âm

� k
v̂

��
(r )

(3{14 )
= `k êk(r )

�
�
r 2 [2� m ;4� m ]

; (3{18)

implying that êk(�r ) = `k êk(r ), and, due to Lemma1, that eRTS
k (�r; � ) = `keRTS

k (r; � ).

With this scaling relationship, the �rst six radial eigensplines can be written out

explicitly. The subdivision matrix A was constructed to have the spectral behavior in
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Table 3-1 in order to satisfy the following key lemma. For succinctness and clarity, we

use the notation Bnc�� for (Bn( 7! c� )) ( � ), where the operator Bn is applied to the

function  7! c� := cos(2�� ), and the resulting spline is evaluated at� . Similarly,

(Bn( 7! s� )) ( � ) is shortened to Bns�� .

Lemma 2 (Reproduction of Radial Taylor Basis Functions). For r 2 [0; 4],

ê0(r ) = 1 (3{19)

ê1(r ) = ê2(r ) = r (3{20)

ê3(r ) = ê4(r ) = ê5(r ) = r 2 (3{21)

êk(r ) = o( r 2) as r ! 0 for k > 5 (3{22)

which imply, by Lemma1, that

eRTS
0 (r; � ) = 1 ; eRTS

1 (r; � ) = r Bnc� ; eRTS
2 (r; � ) = r Bns� ;

eRTS
3 (r; � ) = r 2; eRTS

4 (r; � ) = r 2 Bnc2� ; eRTS
5 (r; � ) = r 2 Bns2�

eRTS
k (r; � ) = o( r 2) as r ! 0 for k > 5:

Proof. (3{19) follows sinceÂ0v̂0 = v̂0 and
�

Ĝ0v̂0

�
(r ) = 1. We can now verify, for

k 2 f 1; 2g, that êk(r )jr 2 [2;4] =
�

Ĝ0v̂k

�
(r ) = r jr 2 [2;4] by B-spline-to-power-series conversion

(2{1). The additional property from (3{18) that êk( 1
2r ) = 1

2 êk(r ) implies (3{20). Similarly,

for k 2 f 3; 4; 5g, B-spline-to-power-series conversion shows that ^ek(r )jr 2 [2;4] = r 2jr 2 [2;4].

Hence,êk( 1
2r ) = 1

4êk(r ) implies (3{21).

When k > 5, using �r := r
� m ,

êk(r )
�
�
�
r 2 [2� m ;4� m ]

= êk(� m �r )
�
�
�
�r 2 [2;4]

(3{18 )
= `m

k|{z}
o(� m )

êk(�r )
�
�
�
�r 2 [2;4]

= o( � m )
�
�
�
�r 2 [2;4]

= o (( � m �r )2)
�
�
�
�r 2 [2;4]

= o( r 2)
�
�
�
r 2 [2� m ;4� m ]

;

proving (3{22).
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Lemma 2 is used to derive a quadratic Taylor expansion to show second-order

continuity for two of our proposed subdivision algorithms.

3.3.2 Reformulating RTS in eigenspace

De�ning the real matrix VR as havingkth column vk , we have (as in (3{15)),

AVR = VR� ) V � 1
R AVR = � ) V � 1

R A = � V � 1
R ; (3{23)

implying that the rows of V � 1
R are left eigenvectorswk of A. We choose normalization

so that wT
k1

vk2 = � k1k2 . Multiplication with V � 1
R projects the polar con�guration into

eigenspace using these left eigenvectorswk . Precisely,q (respectively, xRTS ) can be written

as a linear combination of the 6n right eigenvectorsvk (respectively, eigensplines ^e) as

follows

q = VR|{z}
columns v k

( V � 1
R|{z}

rows w k

q) ) qij =
6nX

k

pk (vk) ij (3{24)

) L RTS (q) =
6nX

k

pk L RTS (vk) ) xRTS (r; � ) =
6nX

k

pk eRTS
k (r; � ); (3{25)

where eacheigencoe�cient pk is the inner product ofwk and q. As was the case forvk ,

wk is computed fromŵk (listed in Table 3-1) using the inverse Fourier transform so that

pk := wT
k q =

6X

i

nX

j

1
n

(ŵk) i opk

�
j
n

�

| {z }
(w k ) ij

qij (3{26)

Speci�cally, for k 2 Z 6,

p0 :=
2
3

q00 +
1

3n

nX

j

q1j ; p3 := � q00 +
1
n

nX

j

q1j ; (3{27)

p1 :=
2
n

nX

j

cj :nq1j ; p4 :=
3
n

nX

j

c2j :nq1j ;

p2 :=
2
n

nX

j

sj :nq1j ; p5 :=
3
n

nX

j

s2j :nq1j
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The eigencoe�cient pm
k := wT

k qm of qm simpli�es to pm
k = wT

k Am q = ( wT
k Am )q =

`m
k wT

k q = `m
k pk . The re�nement equations (3{5){( 3{8) of RTS can now be rewritten in

terms of pk .

Lemma 3. The m-times re�ned meshqm is de�ned by eigencoe�cients and powers of

eigenvalues as follows.

qm+1
00 = p0 �

� m+1

3
p3 (3{28)

qm+1
1j = p0 + � m+1 (p1cj :n + p2sj :n) +

2� m+1

3
(p3 + p4c2j :n + p5s2j :n ) (3{29)

qm+1
2j = p0 + 2� m+1 (p1cj :n + p2sj :n) +

11� m+1

3
(p3 + p4c2j :n + p5s2j :n) (3{30)

qm+1
3j = p0 + 3� m+1 (p1cj :n + p2sj :n) +

26� m+1

3
(p3 + p4c2j :n + p5s2j :n) (3{31)

qm+1
4j = p0 + 4� m+1 (p1cj :n + p2sj :n) +

47� m+1

3
(p3 + p4c2j :n + p5s2j :n) (3{32)

qm+1
5j = p0 + 5� m+1 (p1cj :n + p2sj :n) +

74� m+1

3
(p3 + p4c2j :n + p5s2j :n) (3{33)

Proof.

qm+1
00 =

3
4

qm
00 +

1
4nm

GqmX

h

qm
1;[h]

(3{27 )
= pm

0 �
1
12

pm
3

= p0 �
� m

12
p3 = p0 �

� m+1

3
p3

qm+1
1j =

1
2

qm
00 +

1
n

nX

h

�
1
2

+ ch� j :n +
1
2

c2(h� j ):n

�
qm

1h

addition rule
for cosine & ( 3{27 ) = pm

0 +
1
2

(pm
1 cj :n + pm

2 sj :n) +
1
6

(pm
3 + pm

4 c2j :n + pm
5 s2j :n)

= p0 + � m+1 (p1cj :n + p2sj :n) +
2� m+1

3
(p3 + p4c2j :n + p5s2j :n)

The proof for (3{30){( 3{33) is similar to that of ( 3{29).

With the radial eigenvectorsv̂0 = [1; 1; 1; 1; 1; 1], v̂1 = v̂2 = [0; 1; 2; 3; 4; 5],

v̂3 = 1
3[0; 2; 11; 26; 47; 74], andv̂4 = v̂5 = 1

3 [0; 2; 11; 26; 47; 74], (3{28){( 3{33) can be

written as
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qm+1
ij = p0 + ( v̂1) i � m+1 (p1cj :n + p2sj :n)

+ � m+1 (( v̂3) i p3 + ( v̂4) i (p4c2j :n + p5s2j :n))

) qm+1
i; [� ] = p0 + ( v̂1) i � m+1 (p1c� + p2s� )

+ � m+1 (( v̂3) i p3 + ( v̂4) i (p4c2� + p5s2� )) (3{34)

for i 2 Z 6. In particular,

lim
m!1

qm
ij = p0 ) lim

m!1
(Gm qm ) (r; � ) = p0;

converging to a unique pointp0, showing that xRTS (r; � ) is C0 at the pole.

3.3.3 Eigenspace expansion and curvature continuity

C0 and C1 continuity can be seen more explicitly by expressingxRTS using the

eigenprojection.

xRTS (r; � )
(3{25 )

=
6n0X

k

pk eRTS
k (r; � )

Lemma 2 = p0 eRTS
0 (r; � ) +

�
p1 eRTS

1 (r; � ) + p2 eRTS
2 (r; � )

�

+
�
p3 eRTS

3 (r; � ) + p4 eRTS
4 (r; � ) + p5 eRTS

5 (r; � )
�

+ o
�
r 2

�
(3{35)

Lemma 2 = p0 + ( p1r Bnc� + p2r Bns� ) +
�
p3r 2 + p4r 2 Bnc2� + p5r 2 Bns2�

�
+ o

�
r 2

�

This expansion using the eigensplines is almost a Taylor expansion. [Peters and Reif,

2008, Section 5.2] shows that thecharacteristic spline� (r; � ) := ( eRTS
1 (r; � ); eRTS

2 (r; � )) =

r (Bnc� ; Bns� ) is the only reparameterization, up to linear transformation, of xRTS that

can reproduce a linear Taylor expansion at the pole. Figures2-7B, and 3-2 illustrate the

spline rings of� , which are regular and injective, validating the reparameterization. Using

(x; y) := � (r; � ), the reparameterized surfacexRTS (x; y) := xRTS (r; � ) has the �rst-order

Taylor expansion
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xRTS (x; y) = p0 + ( p1x + p2y) + o ( r )
�
�
�
r 2 [2� m ;4� m ]

and is thereforeC1 at the pole. By the conditions in [Peters and Reif, 2008, Section 7.1],

the additional property that ( `0; `1; `2; `3; `4; `5) = (1 ; �; �; � 2; � 2; � 2) implies that the limit

surface also has bounded curvature.

In order to take this a step further to C2 continuity, we need eigensplineseRTS
3 , eRTS

4 ,

eRTS
5 to be quadratic with respect to the reparameterization� to induce a second-order

Taylor expansion. Preferably, these eigensplines should not be zero, since that would

result in a zero second derivative and a visible at-spot in the vicinity of the pole.

� (r; � ) = r (Bnc� ; Bns� ) is degree 1 inr and degree 3 in� , which is the minimum degree

needed to createC2 spline rings around the pole. Consequently,eRTS
3 , eRTS

4 , and eRTS
5 need

degree (2; 6) to be quadratic in � . This implies that it is impossible to create a stationary

C2 subdivision for polar con�gurations based on uniform splines with degree less than 6 in

the circular direction.

However, in the limit n ! 1 , the surface around the pole is no longer a spline in the

circular direction, but an arbitrary curve qi; [� ] for � 2 R 1 (Figure 3-4B). Denote this case

as RTS1 , with qi; [� ] being thecontrol curvesof this subdivision algorithm. We now show

that a non-trivial second-order Taylor expansion exists atthe pole for RTS1 .

Lemma 4. eRTS
k (r; � ) � êk(r ) opk(� ) = O

�
1

n2

�
, implying that

eRTS 1
k (r; � ) := lim n!1 eRTS

k (r; � ) = êk(r ) opk(� )

Proof. Sinceêk(r ) is independent of valence, and

eRTS
k (r; � ) � êk(r ) opk(� ) = êk(r ) Bnopk(� ) � êk(r ) opk(� )

= êk(r ) (B nopk(� ) � opk(� )) ;

we need only examine the spline approximation of opk(� ) via Bn. We show that

1. the distance between Bnopk(� ) and its control polygon is O
�

1
n2

�
, and that
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2. opk(� ) and its linear interpolant (i.e. the control polygon of Bnopk(� )) is O
�

1
n2

�
.

Together, these statements imply by the triangle inequality that eRTS
k (r; � ) � êk(r ) opk(� ) =

O( 1
n2 ), proving the lemma.

Step 1. [Lutterkort and Peters, 2001] showed that for uniform cubic splines with control

points [qij ]j 2Z n , the distance between the control polygon and the spline is proportional to

the second di�erences of the control points:16 maxj fj qi;j � 1 � 2qij + qi;j +1 jg. In the context

of this lemma, qij = opk

� j
n

�
, and

1
6

max
j

fj qi;j � 1 � 2qij + qi;j +1 jg

=
1
6

max
j

8
<

:

�
�
�
�
�
�
opk

�
j � 1

n

�
+ opk

�
j + 1

n

�

| {z }
� 2 opk

�
j
n

�
�
�
�
�
�
�

9
=

;

=
1
6

max
j

� �
�
�
�2 opk

�
j
n

�
c� k :n � 2 opk

�
j
n

� �
�
�
�

�

=
1
3

max
j

8
>>><

>>>:

�
�
�
�opk

�
j
n

� �
�
�
�

| {z }
� 1

j(c� k :n � 1)j

9
>>>=

>>>;

�
1
3

max
j

f 1 � c� k :ng
Taylor

=
expan.

O
�

� 2
k

n2

�
= O

�
1
n2

�

Step 2. For an arbitrary function f : [a; b] 2 R ! R , a Taylor expansion ata shows that

a piecewise linear interpolant with distance1
n between breakpoints approximatesf with a

deviation of O
�

1
n2 max[a;b]f f 00g

�
. Consequently, the piecewise linear interpolant to opk(� )

converges O
�

� 2
k

n2

�
= O

�
1

n2

�
.

Theorem 1. In the limit n ! 1 , RTS is C2 at the pole.

Proof. Assumingn ! 1 and continuing from (3{35),

xRTS 1 (r; � )
�
�
�
r 2 [2� m ;4� m ]

Lemma 2 &
Lemma 4 = p0 + ( p1rc� + p2rs � ) +

�
p3r 2 + p4r 2c2� + p5r 2s2�

�
+ o

�
r 2

�

43



Changing from polar to Cartesian coordinates (x; y) := ( rc� ; rs � ), xRTS 1 (x; y) :=

xRTS 1 (r; � ) reveals the following second-order Taylor expansion at the pole

xRTS 1 (x; y) = p0 + ( p1x + p2y) +
�
p3(x2 + y2) + p4(x2 � y2) + p5(2xy)

�
+ o

�
x2 + y2

�
;

proving C2 continuity at the pole.

Nevertheless, curvature continuity comes at a cost: we are no longer polynomial in the

circular direction. In the Chapter 4, we adapt the intuition developed so far to create aC2

bi-3 subdivision algorithm that overcomes these disadvantages.

3.4 Approximation via Mesh Re�nement

Mesh re�nement is easiest to demonstrate on a control mesh with latitude-longitude

connectivity of the earth as in Figures2-5B and 2-6. Such aspherical meshconsists

entirely of ordinary quads and exactly two polar con�gurations. Spherical meshes have

precisely two directions: A) radial, or longitudinal, corresponding to thej -spokes of

the polar con�gurations; and B) circular, or latitudinal, corresponding to thei -links of

the polar con�gurations. Each radial sequence of control points of the spherical mesh is

similarly called a spoke, while each (periodic) circular sequence is alink. We can perform

radial subdivisionalong the spokes of a spherical mesh by using the special RTS rules of

De�nition 1 and Figure 3-3 in the vicinity of polar vertices, while using univariate cubic

re�nement (2{4) away from them. We can also double the valence of each polar vertex by

performing circular subdivisionalong each link using univariate cubic re�nement.

The RTS limit surface is de�ned by continually applying radial subdivision and

interpreting links su�ciently far away from the polar verte x as the control points of a

uniform bi-3 spline, implying that circular subdivision may be applied on these links.

Consequently, the RTS limit surface of a spherical mesh can be computed a la Figure

2-2(A-B) by applying radial subdivision ad in�nitum followed by circular subdivision ad

in�nitum. An m-times subdivided approximation this limit surface can hence be computed
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by subdividing m times in the radial direction followed bym-times subdividing in the

circular direction, as demonstrated in Figure2-5B.

On the other hand, the curvature-continuous variation RTS1 requires each polar

vertex to have in�nite valence before radial subdivision isever applied. This is accomplished

by interpreting each link to be the control points of a cubic spline which acts as a control

curve of RTS1 . The corresponding limit surface can be computed by applying circular

subdivision ad in�nitum (converging to the control curves)followed by radial subdivision.

As a result, anm-times re�ned approximation is computed by subdividingm times in the

circular direction followed by m-times in the radial direction.

A

B1 B2

C

D

Figure 3-5. Combining Catmull-Clark and RTS. A) Separatingthe input mesh. B)
Subdividing the polar con�guration B1) radially then B2) circularly for
bounded curvature (red arrows), OR B1) circularly then B2) radially for
curvature continuity ( blue arrows). C) Subdividing the remainder using
Catmull-Clark. D) Joining the re�ned meshes after removal of overlapping
facets.

Either mesh re�nement technique can be combined with Catmull-Clark subdivision to

be applicable to arbitrary quad meshes augmented with polarcon�gurations (see Figure

3-5).

1. Split o� polar con�gurations: Copy all polar 3-rings and remove each polar vertex
from the input mesh.
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2. Subdivide polar con�gurations:For each polar con�guration,

(a) subdivide m times radially, and then

(b) subdivide m times in the circular direction.

3. Subdivide the remaining mesh:Apply m steps of Catmull-Clark subdivision to the
mesh without the polar vertices.

4. Merge results:Drop the boundary facets of the meshes subdivided in steps 2 and 3
and join them by identifying the resulting geometrically identical boundary vertices.

Note that the 2- and 3-links are copied with the polar vertex,but not removed from

the rest of the mesh (Figure3-5A), and both Catmull-Clark and polar subdivision re�ne

these common links using uniform bi-3 subdivision rules. The transition between the

Catmull-Clark and polar limit surfaces is thereforeC2.

The disadvantage of such a re�nement scheme is that it is not iterative. We cannot

take the already-re�ned mesh and apply RTS radial subdivision to converge to the same

limit surface. To avoid separation of the polar con�guration from the rest of the surface,

it would be far better if the subdivision algorithm o�ered a simultaneous radial/circular

mesh re�nement algorithm in the spirit of Catmull-Clark and Figure 2-3C. Chapter 4

describes such an algorithm.
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CHAPTER 4
C2 POLAR SUBDIVISION ( C2PS)

4.1 Semi-Stationary Subdivision

RTS can be adapted to non-stationary connectivity while keeping the weights

dependent only on the connectivity of the mesh. In particular, the valence of the polar

vertex doubles after every subdivision. We are no longer limited by stationary subdivision

theory, which requires degree 6 in the circular direction for second-order continuity, as

shown previously.

De�nition 2. Denote byC2 polar subdivision (C2PS) the algorithm that subdivides an

nm -valent polar con�guration qm to an 2nm -valent polar con�guration qm+1 via (see Figure

4-1)

qm+1
00 := (1 � a )qm

00 +
a

nm

Gqm
X

�

qm
1;[� ] =

3
4

qm
00 +

1
4nm

Gqm
X

�

qm
1;[� ] (4{1)

qm+1
1;[� ] := (1 � ^

b 0)qm
00 +

1
nm

GqmX

�

�
^

b 0 + c� � � +
1
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c2(� � � )
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1
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Gqm
X
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2

+ c� � � +
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2

c2(� � � )

�
qm

1;[� ] (4{2)

qm+1
2;[� ] := c

~qm
1;[� ] + (1 � c )~qm

2;[� ] +
2^

d 0

nm

GqmX

�

c� � � qm
1;[� ]

=
11
12

~qm
1;[� ] +

1
12

~qm
2;[� ] �

1
6nm

GqmX

�

c� � � qm
1;[� ] (4{3)

qm+1
3;[� ] :=

1
2

~qm
1;[� ] +

1
2

~qm
2;[� ] qm+1

4;[� ] :=
1
8

~qm
1;[� ] +

6
8

~qm
2;[� ] +

1
8

~qm
3;[� ]

qm+1
5;[� ] :=

1
2

~qm
2;[� ] +

1
2

~qm
3;[� ] (4{4)

where~qm is obtained after subdividingqm once in the circular direction. Observe that

qm+1
3;[� ] , qm+1

4;[� ] , qm+1
5;[� ] are computed via uniform bi-3 spline subdivision. Let the operator T

denote a single application ofC2PS. The limit surfacexC2PS is the union of spline rings

Gm qm whereqm := T m (q0).
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1� c
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Figure 4-1. C2 polar subdivision rules. The rules are the same as RTS (Figure 3-3), except
that the outer i -links require intermediate uniform cubic circular subdivision
(intermediate vertices indicated by2 ). The re�ned mesh (� and dashed lines)
is computed as before from the old mesh (� , solid lines) with b j and d j

computed via (3{9) and (3{10) using half-integer indices. As in RTS, bi-3 rules
are applied away from the polar vertex.

SinceC2PS subdivides in both the radial and circular directions simultaneously, it

is directly compatible with Catmull-Clark, requiring no mesh separation for re�nement:

every quad on the coarse mesh yields four after subdivision,and each polar triangle splits

into two polar triangles and two quads, as illustrated in Figure 4-1. Additionally, the

limit surface is bi-3 and can be computed as a closed-form expression, which is di�cult to

do for RTS on an in�nite-valent vertex. Each subsequent spline ring has twice as many

polynomial patches and control points as its predecessor, and this exponentially-increasing

order of approximation enables the spline ring sequence to converge to a second-order

Taylor expansion at the pole.

4.2 Analysis

Since the connectivity is no longer stationary at the polar vertex, the traditional

method of spectral analysis does not directly apply. However, if we rewrite (4{1){( 4{4)

in eigenspace as we did RTS in Section3.3.2, we can employ a similar analysis technique.
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What helps is the intuition from RTS that the second-order expansion at the pole is

determined by the eigensplinesek multiplied by eigencoe�cients pk de�ned in (3{27).

The eigencoe�cient pm
k of C2PS is also computed via (3{27) on qm , and we

abbreviate pk := p0
k . The eigensplines ofC2PS are the limit surfaceeC2PS

k := L C2PS (vk)

wherevk is an eigenvector of RTS with polar valencen0. A superscript of RTSnm

disambiguates the eigensplineeRTS n m
k of RTS on a valencenm polar con�guration.

The following subsections will show the following.

� As in RTS, pk2 Z 6 is preserved after every application ofT { i.e. pm+1
k = `kpm

k =
`m+1

k pk (Lemma 5).

� T can be approximated in terms ofpk2 Z 6 plus a deviation of O
�

1
8m

�
for polar

valencenm (Lemma 6).

� For k 2 Z 6n , eC2PS
k converges toeRTS 1

k at the rate of O
�

1
8m

�
at the pole (Lemma7).

� The statements above yield a second-order Taylor expansionof xC2PS at the pole
proving that it is C2 (Theorem 2).

4.2.1 Preservation of eigencoe�cients

The following simpli�cations can be shown by using the addition rule for sine and

cosine, and the orthogonality of the discrete Fourier basis.

1
2n

2nX

g

ca1 (g� j ):2n
1
n

nX

h

ca2 (h� g
2 ):nqih =

8
>>>><

>>>>:

1
n

P n
h qih if a1 = a2 = 0

1
2n

P n
h ca1 (h� j

2 ):nqih if a1 = � a2 6= 0

0 otherwise

1
2n

2nX

g

sa1 (g� j ):2n
1
n

nX

h

ca2 (h� g
2 ):nqih =

8
><

>:

� 1
2n

P n
h sa1 (h� j

2 ):nqih if a1 = � a2 6= 0

0 otherwise
(4{5)

Using these simpli�cations, we prove the following lemma for C2PS.

Lemma 5. For the subdivision algorithmC2PS, pm
k = `m

k pk whenk 2 Z 6 and m � 0.

Proof. The base casem = 0 of the induction is trivially true. For the inductive step , we

assumepm
k = `m

k pk and show that this property holds forpm+1
k as well.
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Case k 2 f 0; 3g:

pm+1
3

(3{27 )
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pm
3 = `3pm

3 = `m+1
3 p3

The sequence of steps fork = 0 is very similar to those ofk = 3 above, and it similarly

concludes thatpm+1
0 = `m+1

0 p0.

Case k 2 f 1; 2; 4; 5g:

pm+1
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(3{27 )
=
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Gqm +1
X
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c2(� �  ) +
1
8
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�
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(4{5 ) &
(c = c0�  ) =

2
2nm

Gqm
X

�

c� qm
1;[� ] =

1
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pm
1 = `1pm

1 = `m+1
1 p1

The k 2 f 2; 4; 5g cases are derived using a very similar sequence of steps, showing that for

all six casespm+1
k = `m+1

k pk , completing the induction.

4.2.2 Reformulation of C2PS in terms of the eigencoe�cients

In the same vein as (3{28){( 3{33), C2PS can be reformulated to depend only on

pk2 Z 6 plus a deviation that diminishes quickly in the number of subdivisions.
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Lemma 6. The C2PS re�nement equations(4{1){ (4{4) are of the form

qm+1
00 = p0 �

� m+1

3
p3 (4{6)

qm+1
1;[� ] = p0 + � m+1 (p1c� + p2s� ) +

2� m+1

3
(p3 + p4c2� + p5s2� ) (4{7)

qm+1
2;[� ] = p0 + 2� m+1 (p1c� + p2s� ) +

11� m+1

3
(p3 + p4c2� + p5s2� ) + O

�
1

8m+1

�
(4{8)

qm+1
3;[� ] = p0 + 3� m+1 (p1c� + p2s� ) +

26� m+1

3
(p3 + p4c2� + p5s2� ) + O

�
1

8m+1

�
(4{9)

qm+1
4;[� ] = p0 + 4� m+1 (p1c� + p2s� ) +

47� m+1

3
(p3 + p4c2� + p5s2� ) + O

�
1

8m+1

�
(4{10)

qm+1
5;[� ] = p0 + 5� m+1 (p1c� + p2s� ) +

74� m+1

3
(p3 + p4c2� + p5s2� ) + O

�
1

8m+1

�
(4{11)

Due to the interaction with circular subdivision, the derivation for the four outer links

qm+1
2;[� ] { qm+1

5;[� ] is involved and requires the introduction of new abstractions. The proof of

(4{6){( 4{11) is hence deferred to the appendix to maintain the ow of thisdiscussion.

These equations can be reduced to

qm+1
i; [� ] = ( v̂0) i p0 + ( v̂1) i � m+1 (p1c� + p2s� )

+ � m+1 (( v̂3) i p3 + ( v̂4) i (p4c2� + p5s2� )) + O
�

1
8m+1

�
; (4{12)

for i 2 Z 6, di�ering only by O
�

1
8m +1

�
from (3{34) when the valences are equal.

4.2.3 Convergence of the eigensplines

Here we show thateC2PS
k (r; � ) converges toeRTS 1

k (r; � ) as r ! 0.

Lemma 7.
�
�eC2PS

k (r; � ) � eRTS 1
k (r; � )

�
�
r 2 [2� m ;4� m ]

= O
�

1
8m

�

Proof. Since both RTS andC2PS are a�ne-invariant, eC2PS
0 (r; � ) = eRTS 1

0 (r; � ) = 1, and

the lemma holds. Assume thatk > 0, which also implies thatj`k j � � . Let vk and ~vk be

the kth eigenvectors of RTS of valencenm and n0, respectively.

E :=
�
�
�eC2PS

k (r; � ) � eRTS 1
k (r; � )

�
�
�
r 2 [2� m ;4� m ]

=
�
�
�eC2PS

k (� m r; � ) � eRTS 1
k (� m r; � )

�
�
�
r 2 [2;4]
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triangle
inequality �

�
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= jGm T m (~vk)(r; � ) � GmAm (vk)(r; � )j

| {z }
T m (~v k ) and A m (v k ) have valence nm ; Gm is linear

+
�
�
�`m

k eRTS n m
k (r; � ) � `m
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O( � m )
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�eRTS n m

k (r; � ) � eRTS 1
k (r; � )

�
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r 2 [2;4]| {z }

Lemma 4 ) =O
�

1
n 2

m

�
=O ( 1

4m )

= E1 + O
�

1
8m

�

By de�nition, ph = � hk for h 2 Z 6 when computed on either eigenvector~vk or vk ; in other

words, the �rst six eigencoe�cients of these two eigenvectors match. Since (4{12) and

(3{34) de�ne T m (~vk) and Am (vk), respectively, in terms ofph2 Z 6 , and these two formulae

di�er by O
�

1
8m

�
, it follows that T m (~vk) � Am (vk) = O

�
1

8m

�
. Therefore,E1 = O

�
1

8m

�
, and

E = O
�

1
8m

�
, proving the lemma.

4.2.4 Proof of curvature continuity

We can now establish a second-order Taylor expansion at the pole, proving curvature

continuity.

Theorem 2. C2PS is C2 at the pole.

Proof. Recall from (3{24) that a polar con�guration q0 of valencen0 can be written as the

following linear combination of the eigenvectors,v 0
k , k 2 Z 6n0 .

q0
ij =

6n0X

k

pk (v 0
k) ij ) L C2PS(q0) =

6n0X

k

pk L C2PS(v 0
k)

) xC2PS(r; � ) =
6n0X

k

pk eC2PS
k (r; � )

We examine the sequencexC2PS(r; � )
�
�
r 2 [2� m ;4� m ]

(3{3 )
= ( Gm T m q0) (r; � ) of spline rings

that approach the pole. Sincer 2 [2� m ; 4� m ] ) r
� m 2 [2; 4], r

� m is bounded away from

0 and 1 and has no impact on asymptotic behavior when multiplied. This simpli�es
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Lemma 2 &
Lemma 4 = p0 + r (p1c� + p2s� ) + r 2 (p3 + p4c2� + p5s2� ) + o

�
r 2
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�
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Changing to Cartesian coordinates (x; y) := ( rc� ; rs � ), xC2PS(x; y) := xC2PS(r; � ),

xC2PS(r; � )
�
�
�
r 2 [2� m ;4� m ]

= xC2PS(x; y)
�
�
�p

x2+ y22 [2� m ;4� m ]

=
�
p0 + ( p1x + p2y) +

�
p3(x2 + y2) + p4(x2 � y2) + p5(2xy)

�
+ o

�
x2 + y2

��
�
�
�
�
�p

x2+ y22 [2� m ;4� m ]

;

giving an explicit second-order expansion at the pole whenm ! 1 . Hence the

construction is C2.

The explicit Taylor expansion at the pole allows one to compute principal curvatures

and directions. In some constructions, curvature continuity comes at the cost of

macroscopic shape deterioration, even though the microscopic shape is improved. Chapter

5 shows empirically that our construction does not su�er fromthis defect; it generates

surfaces of high visual quality.
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CHAPTER 5
RESULTS AND DISCUSSION

Figure 5-1 shows a side-by-side comparison of RTS, RTS1 , and C2PS. To avoid

curvature uctuations in the �rst and second spline rings (Figure 5-1(A-B)), uniform

(bi)cubic subdivision is applied to compute the re�ned 2-link on the �rst subdivision

step (Figure 5-1(C-E)). For RTS, this is equivalent to applying bicubic polar subdivision

on the �rst radial subdivision step, while using RTS on all the subsequent ones. The

n-sidedness of the RTS curvature distribution is obvious, while RTS1 and C2PS yield

smoother curvature transitions in the circular direction.C2PS distributes curvature more

evenly, resulting in a lower maximal Gaussian curvature than RTS or RTS1 near the

pole. As expected, for higher valences, the limit surfaces of these three algorithms are

similar (Figure 5-2). Figure 5-3 tests C2PS against various challenging con�gurations.

The smooth highlight lines attest to the surface quality in the vicinity of the pole, even on

higher-order saddles.

It may be possible to devise a bi-degree-4C3 polar scheme using a similar technique.

The key ingredient is that the spline rings constituting thelimit surface would need to

shrink more rapidly to the pole. To see this, observe that thereformulation of C2PS in

terms of eigencoe�cients (Lemma6) is proved by simplifying the treatment of arbitrary

number of circular subdivisions using a parameterized equivalence class a�4[ ] (qi ). The

use of this class contributes a deviation of O
�

1
8m

�
, which is the product of � and the

convergence rate O
�

1
n2

m

�
= O

�
1

4m

�
of piecewise linear approximations to cosines and sines.

Section4.2.4showed that for `1 = `2 = � = 1
2, O

�
1

8m

�
simpli�es to O ( � 3m ) = O( r 3),

contributing to the third-order term of the Taylor expansion at the pole. While our C2

algorithm is una�ected by this, designing aC3 algorithm requires understanding the

third-order term precisely. One way to employ the simplicity of our proofs is to enforce

eigenvalues̀ 1 = `2 = � < 1
2, resulting in a deviation of O

�
� m

4m

�
= o ( � 3m ) that converges to

0 more quickly than r 3, avoiding interference with the third-order expansion.
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RTS

RTS1

C2PS

A B C D E F

Figure 5-1. Comparison of RTS, RTS1 , and C2PS. (C) spline rings de�ning limit surfaces
(A and D) and Gaussian curvature (B and E) of two di�erent initialization
strategies of each scheme on Figure2-5B input. Direct application produces
(A) a sharper bend in the silhouette and (B) an abrupt curvature transition
(dark bluemeans zero Gauss curvature), whereas using bicubic subdivision to
compute the 2-link for the �rst subdivision step improves the curvature
distribution (C, D, E). (F) RTS reveals an n-sidedness in its curvature
distribution, while the curvature of RTS1 and C2PS is much more symmetric.

A. Input B. RTS C. RTS 1 D. C2PS

Figure 5-2. RTS, RTS1 , and C2PS on a polar con�guration of valence 20 show that their
limit surfaces and Gaussian curvature distributions (dark blueis zero
curvature) are similar for large polar valences.

Catmull-Clark extraordinary vertices of arbitrary valence can be converted to polar

con�gurations, as demonstrated in Figure5-4, additionally creating 5-valent extraordinary

vertices (Figure5-4A) or pentagons (Figure5-4C). Thus, it may be possible to deviseC2

algorithms for either 5-valent extraordinary vertices or pentagons to construct surfaces

that are globally C2. This is left for future work.
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A B C D

Figure 5-3. Shape gallery demonstrating thatC2PS performs with good shape. A) Input,
B) twice subdivided mesh, C) Gaussian curvature of limit surface, and D)
highlight lines. Zero curvature isgreen, while negative curvature isblueand
positive is red.
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A B C

Figure 5-4. B) An n-valent Catmull-Clark extraordinary vertex can be converted to either
A) a 2n-valent polar con�guration and n 5-valent extraordinary vertices, or C)
a n-valent polar con�guration and n pentagons.

57



CHAPTER 6
CONCLUSION

For quad meshes, we have introduced the polar con�guration,which appears

naturally at the ends of elongated objects, like the nose of aplane or the tips of �ngers,

where control lines along the same tensor direction meet to form a singularity. We

have presented three polar subdivision algorithms compatible with Catmull-Clark

[Catmull and Clark, 1978] subdivision: RTS, RTS1 , and C2PS. While RTS surfaces

are only C1 with bounded curvature at its pole, RTS1 and C2PS have been shown to be

fully C2. And while the second-order continuity of RTS1 is easier to prove, this algorithm

transitions from a polynomial spline boundary to a non-polynomial surface that is, in

general, not easy to compute exactly. Moreover, as a mesh re�nement algorithm, RTS1

is more complex to implement, requiring a logical separation of the polar con�guration

from the rest of the input mesh before subdivision is appliedto it. In contrast, the entirely

spline-basedC2PS is simpler both as a mesh re�nement algorithm, and for explicitly

evaluating the limit surface. However, sinceC2PS results innon-stationary connectivity,

standard subdivision theory fails to apply, and the proof ofcurvature-continuity at the

pole is more complex. Nevertheless, we have shown, in this study that the algorithm is C2

and given evidence that it tends to give good shape.

Subdivision algorithms are an accepted standard in animation and are sometimes used

for conceptual design in CAD. These algorithms have been been avoided for high-quality

surfaces in CAD partially due to shape problems near extraordinary vertices. We have

gone one step closer to show that a subdivision algorithm maynot be complex and still

have good shape if non-stationary connectivity can be exploited to increase the order

of approximation in the vicinity of the pole. We o�er an additional incentive to use our

method because theory developed in [Reif, 1998] and [Myles et al., 2008] suggests that

curvature continuity may require a degree 6 NURBS surface when more than 4 NURBS

meet at a point. On the other hand, we have shown that degree 3 is su�cient for a simple
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subdivision algorithm exploiting non-stationary connectivity. We hope techniques such as

ours help make subdivision surfaces more useful in mainstream CAD.
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APPENDIX: C2PS IN TERMS OF THE EIGENCOEFFICIENTS

Here, we derive in detail the reformulation (4{6){( 4{11) of C2PS. A checkmark (4 )

indicates that one of these equations has been proved. Whileqm+1
00 and qm+1

1j are readily

expressed in terms of the eigencoe�cients,

qm+1
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3
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1
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0 �
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(p3 + p4c2� + p5s2� ) (A{2)

(4{3 ) & addition
for cosine & ( 3{27 ) qm+1

2;[� ] =
11
12

~qm
�; [1] +

1
12

~qm
�; [2] �

1
6

(pm
1 c� + pm

2 s� )

Lemma 5 =
11
12

~qm
�; [1] +

1
12

~qm
�; [2] �

� m+1

3
(p1c� + p2s� ); (A{3)

the expressions for the four outer linksq2 (A{3 ), q3, q4, and q5 are involved due to

circular subdivision, and only the dominant terms will be shown and needed. With the

intuition that every point on a spline is an a�ne (in fact, convex) combination of the

four B-spline control points that are parametrically closest to it, we de�ne the following

equivalence class of a�ne combinations.

De�nition 3 (a� 4
[ ]). Let u be a vector ofn B-spline control points of a periodic uniform

cubic spline with knot sequence1n Z n . The control points u =
h
u[ 0

n ]; : : : ; u[ n � 1
n ]

i
are indexed

by their Greville abscissae so that adjacent pairs of Greville abscissae are1n apart. The

equivalence classa� 4
[ ](u) of all local a�ne combinations centered at is de�ned as

a� 4
[ ] (u) :=

8
>>>><

>>>>:

4X

g

ugu [ g ]

�
�
�
�
�
�
�
�
�
�

P 4
g ug = 1;

P 4
g ug g = ; and u [ 0 ]; : : : ; u [ 3 ] are the four

control points whose Greville abscissae g are closest to

 , or have weightug = 0 if they tie for fourth place.

9
>>>>=

>>>>;
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Since adjacent Greville abscissae di�er by1n , the a�ne combinations in a� 4
[ ] (u) are

such that j g �  j < 2
n = O( 1

n ) if ug 6= 0. Cubic B-spline re�nement rules ensure that

all a�ne combinations resulting from arbitrarily-many cub ic B-spline re�nements onu

belong in a� 4
[ ] (u). The control points in each circularly-subdividedi -link ~qm

i are a�ne

combinations of control points in thei -link qm
i . Since these a�ne combinations result in

an arbitrary number of cases in our reformulation ofC2PS, we focus on simplifying a�ne

combinations of trigonometric functions.

Lemma 8. If u = [opk( g
n )]g2 Z n , then for all ~u [ ] :=

P 4
g ugu [ g ] 2 a� 4

[ ](u), ~u [ ] =

opk( ) + O
�

� 2
k

n2

�
:

Proof.

Case 1: � k = 0 (i.e. opk( ) = c0 = 1)

For u = [1]g2 Z n , ~u [ ] =
P 4

g ug u [ g ]|{z}
1

=
P 4

g ug = 1 = op k( ).

Case 2: u  = c� k  , � k 6= 0

~u [ ] =
4X

g

ugc� k  g =
4X

g

ugc� k ( g �  )+ � k  =
4X

g

ug

�
c� k ( g �  )c� k  � s� k ( g �  )s� k 

�

=
4X

g

ug

�
1 + O

�
� 2

k

n2

��

| {z }
from c� k (  g �  )

c� k  � ug

�
� k( g �  ) + O

�
� 3

k

n3

��

| {z }
from s� k (  g �  )

s� k 
Taylor expan. &
j g �  j = O

� 1
n

�

= c� k 

�
�

�
��7

1
4X

g

ug + � ks� k 

� � � � � � � �* 0
4X

g

ug( g �  ) + O
�

� 2
k

n2

�
= c� k  + O

�
� 2

k

n2

�
;

satisfying the theorem.

Case 3: u  = � s� k  , � k 6= 0

The proof is almost identical to Case 2 and shows that~u [ ] = s� k  +O
�

� 2
k

n2

�
, satisfying

the theorem.

Equipped with Lemma8, we can now estimateqm+1
2;[� ] by describing a�4

[� ](q
m+1
2 ) 3

qm+1
2;[� ] in terms of pk2 Z 6 . The bound O

�
� 2

k
n2

m

�
on the terms not explicitly written in terms of

pk simpli�es to O
�

1
4m

�
since� k 2 f 0; 1; 2g in the relevant cases andnm = n02m . For each
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~uqm +1
1

[� ] 2 a� 4
[� ](q
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(A{2 ) &
Lemma 8

~uqm +1
1

[� ] = p0 + � m+1
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�
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�
1

4m

��
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�
s� + O

�
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���

+
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�
1
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���
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3
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For each ~uqm +1
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[� ] 2 a� 4
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m+1
2 ), there exist ~uqm

1
[� ] 2 a� 4

[� ](q
m
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2
[� ] 2 a� 4

[� ](q
m
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(A{5 ) describes the set a�4[� ](q
m+1
2 ) recursively with respect tom. Expanding out the

recursion shows that for each~uqm +1
2

[� ] 2 a� 4
[� ](q

m+1
2 ), there exists ~uq0

2
[� ] 2 a� 4

[� ](q
0
2) so that
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Sinceqm+1
2;[� ] 2 a� 4

[� ](q
m+1
2 ), it too is described by (A{6 ), proving 4{8. We similarly

derive formulas for~uqm +1
3

[� ] 3 a� 4
[� ](q

m+1
3 ), ~uqm +1

4
[� ] 3 a� 4

[� ](q
m+1
4 ), and ~uqm +1

5
[� ] 3 a� 4
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automatically yielding formulas forqm+1
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4;[� ] , and qm+1
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