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Subdivision surfaces are popular in animation as a way of sothing coarse control
meshes. On the other hand, the Computer-Aided Design (CADhdustry typically prefers
the simplicity and predictability of NURBS when constructng high-quality surfaces
for the manufacture of cars and planes. Since a single NURBS&tgh is capable only of
modeling the topologies of planes, cylinders, and torii, is complex to use a NURBS
atlas to construct a surface of arbitrary topology that is cewature-continuous everywhere.
While popular subdivision algorithms of low parametric degge, like Catmull-Clark
and Loop subdivision, are not inherently restricted in toplmgy, they su er from shape
artifacts at so-called \extraordinary vertices". This males them unattractive for CAD.
Subdivision theory requires a (bi)degree of at least 6 in oed for stationary subdivision
to be non-trivially curvature-continuous and mitigate sone of these shape artifacts.

We circumvent this restriction by designing a curvature-catinuous non-stationary
bicubic subdivision algorithm which has the implementatinal simplicity of stationary
algorithms. We hope techniques such as ours make subdiwsigurfaces more attractive for

high-quality constructions in CAD.
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CHAPTER 1
INTRODUCTION

From automobile and plane design to digital movie animatiomo video and computer
game character design, smooth curves and surfaces play adamental role in the design
of objects. Standard Computer-Aided DesignGAD) packages need to represent these
surfaces in an e cient form that is easy to manipulate algothmically, and intuitive for
the user to mold into the desired shape. Additionally, suchusface representations should
be easy to visualize and render onto the screen.

Smooth surface representations in CAD packages can be ldygeassi ed into two
categories: implicit and parametric. Implicit surfaces & de ned in terms of zero-sets. For
example,x? + y>+ z2 1 =0 is the implicit representation of the unit sphere. Whilethis
representation is useful to create basic shape and to applpdiean operations, visualizing
and rendering the surface typically requires solving a sef non-linear equations.

The alternative is to use parametric representations. In crast to its implicit form, a
unit sphere can be represented using three equations in tesraf two parameterss andt as

follows.
X(s;t) = cos(s) cosf); y(s; 1) = cos(s) sin(t); z(s;t) = sin(s)

As sis varied from 0 to andt is varied from 0 to 2 , the points on the surface of the

Figure 1-1. A NURBS surface in a typical CAD package determ&d by a control net
consisting of all quads and internal vertices of valence 4.
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sphere are generated. A standard form of parametric represation is called Non-Uniform
Rational B-Splines or NURBS for short. In this case, thex-, y-, and z-coordinates are
represented separately by piecewise rationals. The surdais de ned by A) a control

mesh or control net, which for NURBS is a quad mesh with each inteal vertex having
valence 4, as shown in Figuré-1; B) two knot sequencethat determine the extent and

e ect of the domain, one for each of thes and t parameters; and, C)weightsassociated
with each vertex in the control mesh. Even though boolean opions on NURBS are
not straightforward, NURBS are popular due to their intuitive manipulability and ease

of rendering. However, being based on quad-grid control stitures, NURBS are capable
of representing only topological planes, cylinders, or tior While the theory of NURBS
will not be discussed, a special case of it is important in thistudy: the uniform B-spline,
with uniformly spaced knots and all weights 1. Surfaces in Bpline form can be converted
directly to closed form, which is useful for analysis. Alteratively, the surface can be

de ned via an iterative mesh re nement algorithm, which is asier to generalize. Chapter

2 discusses uniform bi-degree-3 splines in greater detail.

Table 1-1. Various mesh re nement algorithms (not compretmesive). Quad/triangle is
only C?! over certain edges and isolated points. Except for TURBS, lal
produced surfaces are generically onf@! at isolated points. The last column
indicates whether or not the algorithm interpolates its cotrol points.

Year Algorithm Smooth Degree Basis Interp.
1978 Catmull-Clark [Catmull and Clark, 197§ C? bi-3 2 no
1978 Doo-Sabinpoo and Sabin 197§ C? bi-2 2 no
1987 Loop Loop, 1987 C? 4 4 no
1990 Buttery [Dyn et al., 1994 ct N/A 4 yes
1996 Kobbelt Kobbelt, 1994 ct N/A 2  yes
1997 SimplestPeters and Reif 1997 ct 2 2 no
1998 TURBS Reif, 1999 Ck bi-(2k + 2) 2 no
2000 = 3 [Kobbelt, 200Q C? N/A 4 no
2001 4{8 Melho and Zorin, 200] c4 6 2 no
2001 Circle preservingNlorin et al., 200] C? 3 & trig. 2 no
2002 Ternary triangle Loop, 20024 c4 4 4 no
2003 Quad/triangle [Stam and Loop 2003 C? bi-3, 4 4,2 no
2004 4{3 Peters and Shiue 2004 C? 4 4,2 no

13



To address the inherent limitations of NURBS, subdivisionigfaces were introduced
simultaneously by Catmull and Clark [1978 and Doo and Sabin[197§. The two
subdivision surface algorithms are generalizations of Bise iterative mesh re nement
rules, supporting arbitrary connectivity and manifold topology. These rules specify where
points are added; how the positions of these points are conmpd; and how the mesh is
reconnected. After an in nite iterative application of these subdivision rules, the mesh
converges to a limit surface. Some subdivision algorithmseve created speci cally for
triangular meshes, whereas others were created for quad mes Some were created
speci cally to interpolate the vertices of the control net. Some were designed for tangent
continuity (C?'), and others for curvature continuity (C?). Table 1-1 summarizes several
well-known subdivision algorithms, and is by no means congike. The surface quality of
various C? algorithms listed is de cient at certain isolated points, alled extraordinary
points, where they are onlyC!. What is considered to be an extraordinary point depends
on the details of each algorithm. Sectio2.2, for instance, will de ne the extraordinary
point for Catmull-Clark surfaces and describe the surfaceehavior in its neighborhood.
The literature on the analysis techniques is enumerated ahé end of Sectior2.2.4

Various surface construction algorithms were invented ordapted for applicability or
quality. For example, quad/triangle subdivision mentiond in Table 1-1is a combination
of Catmull-Clark and Loop subdivisions applied to the quad ad triangular portions
of the mesh separately. New rules were developed for the bdary between the quad
and triangle meshes, and the behavior of the surface alongte edges is onlg?.

Since Catmull-Clark by itself was designed for quads and hasdesirable shape on
triangle meshes, its combination with Loop's algorithm impoves overall surface quality
and the applicability of the subdivision algorithm. Addresing surfaces of revolution,
Morin et al. [200] designed a subdivision algorithm capable of reproducingades, which
polynomial algorithms cannot do. This technique reproducecubic polynomials, circles,

and hyperbolic functions depending on a tension parameteBy tensoring the algorithm
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on a quad mesh, they obtained a surface that i§2 except at extraordinary points, where
it is C. While most subdivision algorithms approximately quadrufe the number of points
in the mesh after every re nement, some are speci cally degied to re ne slowly: simplest
subdivision Peters and Reif 1997 and 4{8 subdivision Melho and Zorin, 200] quadruple
every two iterations; P 3 subdivision Kobbelt, 200Q increases 9-fold every two iterations.
Slowing the re nement gives greater control over the size diie re ned mesh. This is
useful for rendering no more than is necessary.

Catmull-Clark and Loop subdivision, the most well-known shdivision algorithms
for quad and triangle meshes, respectively, are known to fewunbounded curvature in
the vicinity of the extraordinary point. Many attempts have been made to improve upon
them. Sabin [199] re-tuned Catmull-Clark so that it yielded surfaces with banded
curvature. Augsderfer et al. [2009 went a step further to minimize Gaussian curvature
variation within the space of bounded curvature algorithmsVarious modi cations have
been made to Loop subdivision to support curvature continty, albeit with a local at
spot with zero curvature Prautzsch and Umlauf 1998 200Q; bounded curvature with the
surface lying within the convex hull of the control points [Loop, 2002ab]; and, curvature
control [Ginkel and Umlauf, 2004. Umlauf [2003 summarized many of these re-tuning
techniques.

Notable constructions that support arbitrary degree of smathness even at the
extraordinary point include free-form splinesRPrautzsch, 1997 and TURBS [Reif,
1999, both of which require degree bi-(R + 2) to create an everywhereck surface.
Ying and Zorin [2004 created an everywherés! surface using exponential blending
functions between polynomial patches. More recent work kyaciauskas and Peters
[2007h 2009 introduced the concept of guided subdivision also capabid achieving
arbitrary continuity. For C?, they employ an in nite sequence of bi-degree-6 spline sade
rings to approximate aC? \guide surface" of good quality. In Kaciauskas and Peters

20074, they employ sequences of bicubic spline rings containiag exponentially-increasing
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number of polynomials to reproduce the guide surface's sadoorder behavior at the
extraordinary point in spite of the low degree of the overalkkonstruction. Our construction
implicitly also uses bicubic spline surface rings of expamt&lly-increasing number of
polynomials to achieve curvature continuity; however, ths increase comes about naturally
in our algorithm,

A variety of other approaches have been used to improve shapear extraordinary
points. Peters[200Q approximated Catmull-Clark surfaces with a nite number d bicubic
patches that join tangent-continuously. As an alternative Peters[200] suggested aC?
construction of degree (35). Both these techniques still su er from shape problems du
to the low degree of the constructionsLoop and Schaefef200g achieved curvature
continuity for quad meshes using patches of bi-degree 7 wishape optimization for the
free parameters.Kaciauskas and Peters[2007¢ used the concepts of guided subdivision to
construct a C? surface with a nite number of bi-degree-6 patches.Lpvin, 2004 perturbed
Catmull-Clark surfaces using polynomial-square-root bieling functions between local
polynomial patches. In the same veinZorin [2009 perturbed Loop subdivision surfaces to

be C2? using a blending function that was itself a subdivision suate.

Figure 1-2. Polar con guration on A) nger tips and B) the top of the mushroom.

Many of the surface construction algorithms mentioned abevare complex or
su er in shape near high-valence verticesKarciauskas and Peters[2007 recognized
one commonly-occurring con guration of high valence in quadominant meshes:the

polar con guration, which is the focus of this study. The polar con guration cosists
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of a high-valence central vertex { thepolar vertex{ in the middle of a triangle fan
surrounded by a quad grid neighborhood. This con guration ccurs naturally at the
ends of elongated objects like tips of ngers, and in the latide/longitude connectivity

of the sphere (Figurel-2), and it is structurally far simpler than the neighborhood &
Catmull-Clark extraordinary points, as we show in Sectior2. Catmull-Clark on polar

con gurations results in macroscopic oscillations in the gar neighborhood. Treating polar
as a special case gives good results, even when the centrédnee is very high (Figure
2-6). Karciauskas et al. [2004 adapted guided subdivision to polar con guration to creas
C? polar jet subdivision, which employs a control net structue to make spline surface
rings of degree (65). Kaciauskas and Peters[20073 introduced very simple bicubic

C? subdivision algorithm with bounded curvature, which was dasequently adapted by
Myles et al. [2009 to be compatible with Catmull-Clark subdivision. Myles et al. [200§
also o ered aC? bicubic NURBS patch construction with bounded curvature tocover the
neighborhood of the polar con guration.

There is no accepted mathematical de nition of surface qui. For simulation, it is
often useful to have well-de ned curvatures. Additionallythe introduction of curvature
continuity tends to improve visual quality of the modeled stface. Subdivision theory
[Peters and Reif 2009 states that Catmull-Clark subdivision cannot be re-tunedo be
non-trivially C2 at the extraordinary point with degree less than bi-6. In thé study,
we sidestep the assumptions underlying this theorem to takedvantage of the natural
subdivision structure of polar con gurations to create aC? algorithm that has degree only
bi-3. We also show that our simple subdivision algorithm ylds surfaces with high visual

quality and good curvature distribution.
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CHAPTER 2
GENERALIZATIONS OF UNIFORM BICUBIC SPLINES

2.1 Uniform B-Spline Representation

We introduce notation and de nitions to simplify the discussion.

N P n - . . P n 1 P S .
For integersn,  is arpalternative notation for | _;. For setsS, Is an
alternative notation for .

is the set of integers, and , is the integers modulon.  is the set of reals. ; is
modulo 1. Z,, is the strictly increasing sequence of integers in,.

An a ne combination is a linear combination where the weights add to 1. Aonvex
combinationis an a ne combination where the weights are positive.

2.1.1 Univariate

A detailed treatment of the B-spline form can be found inHrautzsch et al, 2003.
A piecewise polynomial in B-spline form is de ned by a sequee ofcontrol points that
de nes the shape, and a uniformly-spaced knot sequence thde nes the domain. The
piecewise linear interpolant for a given ordering of conttgoints is known as thecontrol

polygon (see Figure2-1). A univariate cubic (i.e. degree 3) uniform splind : !

X
f(t):=  aN();

where then cubic B-spline based;(t) are

8
ui(t)° if t2 [tijtiv]
SUi+l (t)3 + 3Ui+l (t)2 + SUi+1 (t) + 1 |f t 2 [ti+1 , ti+2]
ti

N;(t) = % Ui (1) BuL(1)2+4 if t2 [tivz;tiea] ui(t) == T
(1 uia(t)? if t2 [tiva;tisal
0 otherwise
(2{1)

While the spline is technically de ned on all of , it is restricted for practical purposes
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control polygon
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// \
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Figure 2-1. Univariate uniform cubic spline. A) A cubic sphe f (t) with control points
b=11;3;1;2, 1] (red) and knotst =[ 1;0;1;2;3;4;5;6;7] is the sum of
uniform B-spline bases scaled by their respective controbmts (blue, green,
magenta, cyal. B) An equivalent de nition using iterative control polygon
re nement.

tot 2 [t3;t,], as in Figure2-1, where at least four non-zero bases overlap. The basis
functions are non-negative and sum to one in this intervalmplying that each point on the
spline is a convex combination of the control points. This gids two important geometric

properties of B-splines.

A ne invariance: Applying an a ne transformation to the control polyhedron
applies it to the transformation spline as well.

Convex hull property: A parametric curve in B-spline form always lies in the
convex hull of its control points.

Uniform cubic B-splines also have built-in second-order ntinuity so that adjacent
polynomial pieces joinC?2.
The t-coordinate associated with each control poirth; is called the Greville abscissa

1Pd

ti and is de ned, in general, viat; := 5 ;'ti+j«1, Whered is the degree of the spline. For

ti+2 . It will be useful later to index control points by

uniform cubics, this simplies to t;

r‘]—. To this end, we

their Greville abscissae when the knot sequence is chosertls t; =

de ne the operator G

Gb = ft;g, (2{2)
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and the bracketed fractional indexing notation.

1™ =0 N O = Ny = R ()
Using this notation, our spline is equivalently de ned as
)@b
F@):= g Npy(0):
One can similarly de ne periodic uniform cubicd : ;! , requiring the knot

sequence to lie within ;. Since the knot sequence cycles around, we need only spegify
knots{e.g.t = %Zn { and assume by convention that the rst control point has Greille
abscissa 0.

The B-spline form can alternatively be de ned via a control plygon re nement

procedure as illustrated in Figure2-1B. The once-subdivided control pointdb?! :=

the following equations.

o= o o+ o+ s by = o ot 244

Applying this re nement procedure ad-in nitum converges b the spline curve.
2.1.2 Tensor-product bivariate
The B-spline bases can be easily generalized to surfaces éysoring the univariate
bases, so that thebi-3 (i.e. bicubic, bi-degree-3, or degree (3,3)), surfac€s;t) is de ned
as
Xs Xt
f(s;t):= by NS ()N (t);
i

where the spline is de ned by thens  n; control meshb of control points, and two knot

N3(s) and Nj‘(t), respectively. The Greville abscissa of a control poirly; is a pair (s;;t;)
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instead of a single real. Figure.-1 illustrates such a uniform bi-3 spline in a typical CAD

environment.

A B

Figure 2-2. Generalizations of mesh connectivity. A) A quadnly generalization to mesh
connectivity allows vertex valences other than 4. B) Polar esh connectivity
arrives naturally when many control lines along the same taor direction meet
at a singularity.

Figure 2-3. Commutativity of regular B-spline subdivision Bi-3 spline subdivision A) in
one direction followed by B) the other, or C) simultaneous reement as in
Catmull-Clark.

The surface can also be de ned using a mesh re nement proceedu The control mesh
may be subdivided in either tensored direction independdyt to yield the same surface
in closed form. Figure2-3illustrates this procedure on a parametric spline, where ¢h
mesh is @A) re ned strictly in one direction twice followed by (B) the other one twice.
Alternatively, one can tensor the subdivision masks so thaine may C) directly subdivide
in both directions twice, converting each original quad ird four re ned ones after every

tensored subdivision.
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2.2 Catmull-Clark and Bi-3 Polar Subdivision

2.2.1 Generalizations of quad grid meshes

Quad-grid control meshes are limited to representing the pmlogy of planes, cylinders,
and torii. Generalizing the mesh connectivity to allow arlirary-valence vertices and
polar con gurations (Figure 2-2) admits meshes encoding arbitrary surface topology. The
B-spline quad-grid connectivity is called theordinary case The extraordinary caseconsists
of a quad neighborhood with arextraordinary vertexof valence6é 4, and its neighboring
guads are callecextraordinary quads The polar con guration, as de ned previously,
consists of a centrapolar vertexof arbitrary valence 3, surrounded by a triangle fan
within rings of regular quads (Figure2-2B).

While the utility of arbitrary valences may be obvious, an apreciation for polar
con gurations requires more observation. Figurd-2 already demonstrates their utility on
certain meshes, but we will justify treating polar con gurdions specially when examining
subdivision surfaces in the following section.
2.2.2 Subdivision as re nement operations

The Catmull-Clark subdivision algorithm Catmull and Clark [197§ takes an arbitrary
input mesh and subdivides it to produce a denser mesh on white algorithm can again
be applied. The limit surface corresponding to this sequemof evermore re ned meshes is
called the Catmull-Clark (limit) surface. For simplicity of discussion, we will assume closed

meshes { i.e. those with no boundaries.

A T T

Figure 2-4. One step of Catmull-Clark re nement converts a msh to all quads.

An application of the Catmull-Clark subdivision procedureconverts every face into

multiple quads by:

1. splitting every edge into two by the introduction of a new ertex (edge vertex),
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2. introducing a new vertex at the middle of the face (face vix), and

3.  connecting the face vertices to their neighboring edgertiees.

See Figure2-4 for the end result on three di erent polygons. Subdivisiongits a face of
sizen into n quads and creates am-valent vertex at the center. Since the mesh facets are
four-sided after one re nement, all subsequent subdivigis quadruple the size of the mesh.
The new points are a ne combinations of their neighbors andhe old vertices are modi ed
using a ne combinations of their old neighbors as well. Catrall-Clark subdivision,
demonstrated in Figure2-5A, can hence be thought of (and was originally derived) as a
generalization of Figure2-3C, where both directions of the mesh are subdivided in a simgl

step.

radial circular 3

Figure 2-5. A) Catmull-Clark subdivision splits every quaddirectly into four, using
special rules in the vicinity of extraordinary vertices, ke the 3-valent ones on
the cube. B) Bi-3 polar subdivision re nes strictly in the radial direction the
desired number of times (thrice here), and nally in the ciralar direction to
achieve the same granularity as Catmull-Clark.

The exact re nement weights are not relevant in this discussn, and are omitted.
However, it is worth noting that these weights depend only othe local connectivity of the
control mesh. The weights are said to bstationary. Additionally, the connectivity is also

stationary, in that the local connectivity around the extraordinary vetex has the same
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structure as before { a valencen vertex surrounded by quads with all other valences being
4. Subdivision schemes with stationary weights and connégty are themselves said to be
stationary.

Bi-3 polar subdivision Karciauskas and Peters 2007a Myles et al, 200§ can be
thought of as generalizing Figure-3(A-B), where subdivisions happen strictly in one
direction followed by the other one. We refer to the directio along the control lines
emanating radially from the polar vertex as theradial direction, and the periodic direction
as thecircular direction. The limit surface is de ned in this case by applying subdigion
in the radial direction ad in nitum, followed by subdividin g in the circular direction.
However, for the purposes of approximating the limit surfae with the mesh, we subdivide
only a nite number of times in the radial direction before weswitch to the circular
direction as illustrated in Figure 2-5B. Bi-3 polar subdivision is stationary, and its
subdivision weights are irrelevant for this discussion. Weill instead detail and analyze a

slightly more complex version of this algorithm in Sectior3.

A B C

Figure 2-6. Even when the polar con guration A) is convex, te Catmull-Clark
subdivision surface B) has unseemly ripples, while bi-3 @olsubdivision C)
yields predictable surfaces.

As Figure 2-6 demonstrates, applying Catmull-Clark to a convex polar coguration
results in macroscopic ripples that are clearly not speciceby the control nets. However,
treating polar con gurations specially yields predictabé surfaces with good behavior
despite a high valence polar vertex. This justi es considarg the polar con guration as a

separate case.
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2.2.3 Subdivision as piecewise polynomials

While uniform splines can be written out in closed form, Catmll-Clark and bi-3
polar subdivision surfaces are not as straightforward. Asidure 2-7 demonstrates, at
any re nement level, the limit surface near extraordinary ertices and polar vertices
is not directly available. However, subdividing once revéma regular ring of quads,
which undergo uniform bi-3 subdivision in subsequent re maents. The surface de ned
by this ring can hence be written out in closed form. Therefer, near extraordinary
vertices and polar vertices, the surface consists of annite sequence o$pline surface
rings approaching a limit point. In the Catmull-Clark case, we cdlthis limit point an

extraordinary point, while in the polar case, it is called gole

?9 ?9
A r R R > ? > >
?
?:9 2
07 ”
B ?9? - 227 - S >

Figure 2-7. The in nite sequence of spline rings of A) Catmi#Clark and B) bi-3 polar
subdivision. Each subdivision reveals additional rings atgular quads,
representing bi-3 polynomial patches, around the extraontary point.

Observe also from Figure2-7 that the boundary of each spline ring around a
Catmull-Clark extraordinary point contains as many cornes as the valence of the
extraordinary vertex. As the extraordinary valence approehes in nity, the boundary
consists of countably in nite corners. On the other hand, irthe polar case, the boundary
is smooth: in a perfectly symmetric case, the boundary appaiohes a circle as the valence
approaches in nity. We exploit this behavior of the polar can guration in the new

subdivision algorithms we design.
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2.2.4 Behavior around and at the extraordinary points

Since the in nite sequence of spline rings de ning the suréa near extraordinary
points and poles are themselve§?, the surface isC? away from these vertices. The
behavior at the extraordinary points and poles requires a me advanced analysis of these
spline sequences. Even though subdivision surfaces haverbaround for 30 years, only
within the last 15 years were the mathematical tools for higér order analysis developed to
maturity. In a landmark paper, Reif [1999 set a general framework to analyze arbitrary
subdivision surface algorithms near and at the extraordimg point. Subsequent work
by Prautzsch and Reif developed su cient conditions and pghomial degrees for
CX continuity by examining the in nite sequence of spline ring [Prautzsch and Reif
1999ha). Zorin [200Q instead derived conditions based on the analysis of cemai
\universal" surfaces that are determined by the subdivisio scheme of interest. Numerous
papers have analyzed the behavior of subdivision surfacesend extraordinary points
[Peters and Umlauf 200Q Sabin et al, 2003 Peters and Reif 2004 Karciauskas et al.,
2004 Reif and Peters 2005. The recent book Peters and Reif 200§ summarizes and
extends the core results of the papers above on the theory obslivision.

Stam [1999 derived a constant-time algorithm for the evaluation of pmts and
derivatives at parameter values arbitrarily close to the exaordinary point, and
Boier-Martin and Zorin [2004 showed that a more canonical parameterization than
the one used by Stam was needed to be able to always compute tlegivatives at the
extraordinary point.

It is now well-known that Catmull-Clark surfaces can haveunbounded curva-
ture near extraordinary points of valence not equal to 4 even thgh they areC?!

[Peters and Umlauf 2004Q. On the other hand, bi-3 polar subdivision Karciauskas and Peters
2007a Myles et al, 200§ was derived with bounded curvature in mind and tends to give
predictable shapes in its areas of applicability. The purpg® of this study is to go beyond

bounded curvature toC?, while still having a simple subdivision algorithm.
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CHAPTER 3
RADIAL TAYLOR SUBDIVISION (RTS)

In this chapter, we will analyzeradial Taylor subdivision a slightly more complex
variant of bi-3 polar subdivision that also has bounded cuature at the pole. Trivial
modi cations of radial Taylor subdivision will yield subdivision algorithms that are C? at
the pole as well.

3.1 Notation and Labeling

The underlying data structure on which we operate is th@olar con guration which
consists of a central triangle fan surrounded by rings of arthry quads (see Figure3-1).
The central vertex of the triangle fan is called thepolar vertex The i-link (i = 0;1;2;::)
of a polar con guration is the circular chain of vertices th&is i edges away from the polar
vertex. The 0-link consists of only the polar vertex itselfThe i-ring (i = 0;1;2;:::)
consists of all the vertices that are no more than edges away from the polar vertex.
While the subdivision algorithms use special rules only irhe 1-ring of the polar vertex,
we assume for analysis that a polar con guration constituthe 5-ring of the polar vertex.

As illustrated in Figure 3-1, the polar con guration is denoted byq and its valence

Counting the polar vertexqo; = oo repeatedly,q has & vertices. We can enumerate all

o AT 42 A3 day dsj

Figure 3-1. Apolar con guration  consists of a total of & control points de ning the
5-ring of a polar vertex Qoo, Which is countedn times) of valencen.
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0 4r

(Go@®) (15 )

(Giah)(r; )

Figure 3-2. Them-times subdivided polar con gurationq™ de nes a cubic spline ring
(Gmg™) (r; ) (orange via (3{1). The radial parameter shrinks by half after
each subdivision so that 2 [2;4] for Gog®(r; ) and r 2 [1;2] for (G.qY) (r; ).

these vertices as the column vector
g :=[d00;910;:::;050; do1;011;: ;051 : 3 Jdon 1,091n 155 :0sn 1]T

We will extract the spline rings described in Sectio2.2.3in such a way that each
control point g; has the Greville absciss% in the circular direction. This allows us
to simplify generalizations to in nite valences and non-stionary valence by using the
valence-independent fractional indexing notation introdced in 2{3): qi;[j;] = gjj . Sincej
in g; is modulon, in g ;is modulo 1.

While in practice, each mesh vertex lies in 3, our analysis is the same as if; 2
since subdivision works on each coordinate independently™ is the polar con guration
after m subdivisions. Omission of the superscript refers to the il data: g := q° n, is
the valence ofg™, and n := nj.

The limit surface of the subdivision procedure is de ned bymin nite sequence of
spline rings that form a decomposition of the surface (seedtres2-7 and 3-2). Each
spline ring is the periodic uniform spline de ned by the ve auter links of g™. More

precisely,
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(radial) N™(r) is the i" cubic B-spline basis with knots ™[ 1;0; 1;2;3;4;5;6;7],
where := 1; and

(circular) for n 3, Nj(”)( ) is the j ™ uniform periodic cubic B-spline basis with
knots 3Z,,.
The spline ring corresponding tog™ is a mapG,g™ : [2 M;4 ™M] 1! , de ned by

the B-spline control pointsqj', with i 2f 1;2;3;4;5gandj 2 , such that

x* X (m) (nm)
(Gma™)(r; ):= A N (DN (0); (3{1)

=1 j
where = % indicating that the radial parameter of each spline ring stinks by half after
every subdivision as illustrated in Figure3-2 Asn, ! 1 , the i-link converges to acurve

dipywith 24, and Gnq™ simplies to

6 Z
(Gna™)(r; )= af N (r)d - (3(2)
i=1 1
Observe also thatG,,q™ is linear with respect tog™.
The polar limit surface x : [0; 4] 1! ( 2 in practice) in polar parameterization

is de ned piecewise in terms of these rings so that

X(5 ) oo g g = (Gma™) (1 ): (3(3)

and x(0; ) is the unique limit point, called the pole The di erence between our polar
parameterization and the conventional one is that our cirdar direction is parameterized
by ;instead of , for notational convenience. The operatoL converts a polar
con guration q to its parameterized limit surface:L(q) := X.

We propose three alternative constructions fox in this study that build upon
each other, and show that the latter two are curvature continous at the pole. To avoid
ambiguity, we will superscriptx and L by the name of the subdivision algorithm they

represent { i.e. LR™S(q) := xR™ as de ned in Section3.2
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The operator G, is a simpler version of the operato,, that works strictly in the
radial direction. For some vectoru 2 6, Gu :[2 ™;4 ™! is the cubic spline de ned
by the B-spline control pointsu;, with i 2 f 1;2; 3; 4; 50:

Guu (r):= * uiN ™ (r): (3{4)
i=1
Like Gm, G is also linear with respect to its parameteu.

To simplify notation, we additionally de ne
c :=cos(2 ) and s :=sin(2 ):
The fraction can also be represented as a ratio so that

— j o ]
G.n:=cCos 2 0 and sj,:=sin 2 0

3.2 Radial Taylor Subdivision (RTS) De nition
De nition 1  (Radial Taylor subdivision). Radial Taylor subdivision, or RTS, re nes an

n-valent polar con guration g™ to the n-valent polar con guration g™*! de ned by

X
doo = = (1 )doo + n dih (3{5)
h
m+1 A m X m
4y = (1 0)doo * h jQ1n (3{6)
h
+1 ><]
az - = ap+(@ oy + h j91h 3{7)
h
+ 1 1 . 1 6 1
a3t = 5af + A az gdl + gdz *+ g3
+ 1 1
a5 = Sdy + 505 (3{8)
where
1 1 1
j = n A0+ G ™t §C2j:n + éCSj:n , (3{9)
l\ — 1- " — l\ 1- Ppe— 11- . " — 1 Y .
0T T T 0T gt (3(10)
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Figure 3-3. Radial Taylor subdivision rules. These masks @lv how to compute each
vertex () on the re ned mesh (ight gray, dashej)l based on the old meshdark
gray, vertices as ). The special radial subdivision rules for RTS are isolatetb
the triangle fan at the center of the polar con guration. Futher out, standard
cubic rules are applied.

The limit surface is parameterized bxR™S, de ned by the spline ringsG,,q™ de ned in
(3{3).

The subdivision rules of RTS are illustrated in Figure3-3. It follows by de nition
that n, = n. Sincqumj”, qﬂ{j‘”, qg}” are computed via uniform cubic spline subdivision,
Gmq™ de nes a subset ofxR™S. The re nement weights for bi-3 polar subdivision are
identical to those of RTS, except that it uses uniform cubicubdivision for qg}”. As
was the case for bi-3 polar subdivisiorKrciauskas and Peters 20073, we assume, that
the polar valencen 5. This assumption is not applicable to the other two subdigion
algorithms, RTS, and C2PS, that we de ne later.

RTS can more compactly be written in terms of matrix multiplication:
g™t = AQ™; (3{11)

whereA is a 6  6n matrix. Since the subdivision algorithm is rotationally synmetric

around the polar vertex, our enumeration of the control poits in g™ allows us to write A
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in block circulant form, distributing evenly the contribution of the polar vertex amongst

its n di erent labels qgj,j 2 .

2 3
Ao A An 1
An 1 AO An 2
A =
Aq An 1 Ao
where
3
(1 )=n =n 0 0 0O 2 1 )=n :n00003
(L "o)=n o 0 0 00 (1 "o)=n ; 0000
A0:§ 0 * ol OOOZ- A ;:2 0 }oooog'for160
0 1=2 1=2 0 005 ] 0 0 0000
0 1=8 3=4 1=800 0 0 0000
0 0 1=21=200 0 0 0000

Only the rst 3 3 block of the subdivision matrix has non-standard weightsyhile the
rest is merely the application of uniform cubic spline subdision in the radial direction.
Nevertheless, the entire 6 6 matrix is required to de ne the spline rings for analysis.
3.3 Analysis
Using tools summarized inPeters and Reif 2009, we analyze RTS the subdivision

limit by examining the limit
lim G,(gM) = lim G,(A™q) (3{12)
m!l m!l

of the sequence of spline rings de ningR™ near the pole Section3.3.1examines the
spectrum of A that motivates the choice of its entries. Sectior8.3.2then reformulates RTS
in eigenspace to derive, in Sectiof.3.3 an expansion of the dominant terms at the pole
and conclude that in the limitn!1 |, the limit surface is C? at the pole.
3.3.1 Spectral analysis of RTS

The subdivision algorithm (not necessarily the surface) itationally symmetric and
periodic such thatqfj ,, = qgj". This suggests that a Fourier transform in the circular
direction may factor out the radial and circular behavior ofthe subdivision algorithm

to aid our analysis. In other words, since the subdivision nidx A is block circulant
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due to the rotational symmetry of RTS, we can diagonalize it sing the discrete Fourier

transform. The complex Fourier block matrix

2
I | |
|2 | 4]
Fo=( Dz o =81 1,20 14 1 2| (3{13)
BT 1Y

P
where! :=exp 22— andl isthe 6 6 identity matrix. It can easily be veri ed that F
p = y

is almost orthogonal:

=l
n

1 .
Fo= o Dz o
whereF is the Hermitian adjoint (conjugate transpose) of. An important property

that is exploited later is that for k > 0, the k™ andn k™ block columns ofF ! are

complex conjugates of each other. We can now block diagozalA via

2 3
A, O 0
0 A 0 .
A:=FAF '= C Ac= L RA;
j
0 0o A, ;
where
3
1 0 000 0 0 0O 0O00O
1% " 0 000 o " 0 000
A §o +"0 1 oooé —A go +M01 oooé
0~ 0 1=2 1=2 0 005> k= ™n k= 40 1=2 1=2 0 00
0 1=8 3=4 1=800 0 1=8 3=4 1=800
0 0 1=2 1=200 0 0 1=21=200
X X
N k. Nz |k
k i k j

Note that this re-de nition of " is consistent with its usage in the de nition 3{9) of ;.

Consequently,
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ifk=0

- . 8
ifk2fln 1g 2 1 ifk2f1,n 1g

N 12

ifk2f2n 2g and =

N
k =
0 otherwise

Bl Bl NIe NI
o

ifk2f3;n 3g

8
0 otherwise

Ay is called thek™ Fourier block of A and encodes the action of RTS on thk™ frequency
mode when going around the polar vertex. For instancé, alone determines the e ect
of RTS when each control pointg; is independent of the circular indeX . This includes
polar con gurations sampled from a constant function or a pabola.

Since the eigenvalues and eigenvectors dfand A are closely related by the Fourier

transform, we use a similar notation for spectral analysis.

non-increasing order of magnitudej o | "1 ::: ] “en 1j.- Equal eigenvalues are
listed once for each multiplicity and treated separately.

« is the index of Fourier blockA . contributing eigenvalue ", chosen so that
\kl: \kz and k; <k, imply ki < ko

Vi (respectively,wy) is the 6n-dimensional right (respectively, left) real eigenvector
of A corresponding to eigenvaluéy.

¢« (respectively, W) is the 6-dimensional right (respectively, left) eigenveor of
the Fourier block A .» corresponding to eigenvalué,. ¢ is also called aradial
eigenvector

We abuse the caret (") notation to represent objects or funitins in the Fourier domain,
even if they do not directly arrive via a Fourier transform. or example, as seen shortly in
(3{14), the operator G, (see B{4)) de nes the radial limit curve of ¢, in a manner similar
to G, de ning the limit surface x.

As summarized in Table3-1, we have
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Table 3-1. The dominant spectral behavior of. The left (W) and right (%) eigenvectors
are normalized so that the related vectorsvy and vy satisfy WIlez = Kiko-

Fourier eigen-

k block ( ) value (k)  vector (right) (¢]) vector (left) (W)

0 0 1 11,5551 3[210000]

1 1 = [0,1;2;3;4,5] [0, 2;0;0;0; 0]

2 n 1 1=2 [G1;2;3;4;5] [G 2;0;0;0;0]

3 0 1=4 3 1,2,11,26,47,74] [ 1,1;0;0;0;0]

4 2 1=4 %[0; 2,11, 26,47, 74] [Q3;0;0;0;0]

5 n 2 1= 300, 2,11, 26,47, 74] [ 3;0;0;0;0]
with = % and = ?= %1. The rest of the eigenvalues are real and positive with
magnitude strictly less than's. The eigenvalues, = 1 and '3 = are from Ao
1= ", = arefromA;and A, ;;and the naltwo *, = ‘5 = are fromA, and

A, . In order for these ve important Fourier blocks to exist, the valencen must be at
least 5, justifying this assumption.

SinceA is an operation on polar con gurations, the eigenvectorg, of A are also
polar con gurations. The eigensplineel™ : [0; 4] 1! is the limit surface L (vi) of
these polar con gurations. Theradial eigensplineé : [0; 4] ! is the limit curve of radial

eigenvector¢y as de ned by the decomposition
&) 1 mam = Gm AT 0k (1) (3{14)

Figure 3-4illustrates the relationship, for example, betweews, ¢35, €575, and &.
Let := diag( "o; 1;:::; en 1) be a diagonal matrix of the eigenvalues oA
(respectively A), and V be a matrix whose columns enumerate the corresponding right

eigenvectors (of any scale) o, so that AV = ¥ . Then,

AV =¥
)F AF W =X ) A(F 1\7):(|F{21\7;
Vei=
) AVe=\c ; (3{15)
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A.Nn=6 B.n!l

Figure 3-4. Eigenvectorvs is the n-valent polar con guration (black mesh/curvep
de ning the eigensplineel™ (blue and red surface The corresponding radial
eigenvector¢; (indicated by ) de nes the radial eigensplinee$ (blue and red
curve)l. Whenn!1 | then &(r) = €5(r; 0).

implying that the columns of V¢ are (complex) eigenvectors oA. Since the Fourier
blocks A« and A, « are identical and the corresponding pairs of block columng B * are
complex conjugate, eigenvalues from these Fourier blocke associated viadve = F 1%
with pairs of complex conjugate eigenvectors @&. The real eigenvectors/ of A can hence

be computed as the real and imaginary portions of these coregl eigenvectors:

8
j 2 ¢, if « n=2
(Vii = (%) op oo op( )= (3{16)
: S otherwise

k

wherek 2 4,, 12 ¢,andj 2 . According to Table 3-1, (opy( );0opi( );:::s0ps( ) =
(;c;s;1c ;2 ) : The eigensplineel™ inherits the tensored nature ofvy.

P :
Lemma 1. Foranyf : ! , the operatorB" : f 7! j”f ’ﬁ Nj(”) uses uniform

samples on a functiorf as the control points of a periodic spline. Then, the eigerse

el decomposes according to

5 (r; ) =a(r) B"op( ) (3{17)
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Proof. Forr 2 [2 M;4 ™],

o0 ) (Gav™ (1)

XX
(3{1) m (m) (n)
(3{—11) o (A V)ij N; (r)Nj ()
xXo
= v NEPONS ()
i=1
X‘l .
(E®) MO ope = NMEOND()
i=1 n
><‘| .
= A (@) op — NTONT()
i=1 ' | |
- Am@) N opc LON()
i=1 ! j
T 6, A" (0n)  (r) B op ()
(3(14)

B (r) B op ()

U
Lemma 1 shows that the block diagonalization factors the radial fnm the circular.
From this formulation, it is also obvious that el™ is periodic in with a period of ik
which is a direct consequence df; having frequency mode . Eigensplines and radial
eigensplines also inherit the scaling property of eigenvers, in that for r = r
er(( r ) r2[2 m-4 m] = /ek(r) r2[2 m+1 4 m+1]
3{14 + <
CEY G A" () = Gua AMO (r)
- (3{14) N
=k ém Amko (r) = ker((r) r2[2 m:4 m]r (3{18)

implying that &(r ) = “¢&(r), and, due to Lemmal, that ef'S(r; )= " elTS(r; ).
With this scaling relationship, the rst six radial eigensgines can be written out

explicitly. The subdivision matrix A was constructed to have the spectral behavior in
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Table 3-1in order to satisfy the following key lemma. For succinctnasand clarity, we
use the notation B'c for (B"( 7! ¢ ))( ), where the operator B is applied to the
function 7! ¢ = cos(2 ), and the resulting spline is evaluated at . Similarly,
(B"( 7's ))( ) is shortened to B's

Lemma 2 (Reproduction of Radial Taylor Basis Functions) For r 2 [0; 4],

&(r)=1 (3{19)

e (r) ="(r)=r (3{20)

&3(r) = %u(r) = %®s(r) = r? (3{21)
&(r)=o(r®) asr! Ofork>5 (3{22)

which imply, by Lemmal, that

s )=1; =, )=r Bc; €&™(r; )=r B"s;
&S )=r%  &5(; )=r2B'c; &€5(; )=r2B"s,
ef15(r; )=o(r?) asr! Ofork>5:

Proof. (3{19) follows sinceAgto = ¢o and G0y (r) = 1. We can now verify, for
k 21,29, that &(r)jr2pq = Goly (r) = rjr2p2:4 by B-spline-to-power-series conversion
(2{1). The additional property from (3{18) that ’eK(%r) = %ék(r) implies (3{20). Similarly,
for k 2 f 3;4; 59, B-spline-to-power-series conversion shows that(f)j 2.4 = r2jr2[2;4].
Hence,e(3r) = 16c(r) implies (3{21).

When k > 5, usingr := -,

(3{18)

&(r) B M)

m

r
(202 M4 ] r2[2:4] 1{%} &(r)
o( ™)

o(( ™r)?) = o(r?) i
r2[2;4] r2[2;4] r2[2 m;4 mj

r2[2;4]

|
o
L)
3

I

proving (3{22). O
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Lemma 2 is used to derive a quadratic Taylor expansion to show seccodder
continuity for two of our proposed subdivision algorithms.
3.3.2 Reformulating RTS in eigenspace

De ning the real matrix Vg as havingk™ columnv,, we have (as in 8{15)),
AVR=Vr ) Vi'AWg= ) VRTA= VLY (3{23)

implying that the rows of Vi, * are left eigenvectorsvy of A. We choose normalization
SO thatw{lvk2 = .k Multiplication with V' projects the polar con guration into
eigenspace using these left eigenvectarg. Precisely,q (respectively,xRS) can be written

as a linear combination of the 6 right eigenvectorsvy (respectively, eigensplineg)’as

follows
— 1 — )@”
IS R (324)
n )@n
)L R™8(q) = P LR (vy) ) xF(n )= pe 75(n ) (3{25)
k k

where eacheigencoe cient py is the inner product ofw, and q. As was the case fow,

wy is computed fromw (listed in Table 3-1) using the inverse Fourier transform so that

- 01 j
Pk == W, Q= — (Wy)i op o i (3{26)
T R )
(W)ij
Specically, fork 2 ¢,
2 1 X xXo
Po = §QO0 2n ST P3= Joot — Ok (3{27)
j j
2 X 3 X
p1 = n G :nQyj; P4 = n C2i:ndyj ;
j j
2 X 3 X
p2 = n Sj:ndyj; Ps = n S2j :nQ1;
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The eigencoe cient p{' := w,] g™ of g™ simplies to pf® = w]A™q = (w AM)q =
‘Mwyg = "pk. The re nement equations B{5){( 3{8) of RTS can now be rewritten in
terms of py.

Lemma 3. The m-times re ned meshg™ is de ned by eigencoe cients and powers of

eigenvalues as follows.

mrl = m 3{28
Qoo = = Po 3 P3 (3{28)
m+1
qy™ = po+ ™ (PiGu + PaSin) + (P3+ PaCyj:n + P5Szn) (3{29)

. . 1 m+1
a5 = po+2 ™ (P1Gun + P2Sim) + 3 (P3+ P4Cy:n + P5Sjin) (3{30)
. . 6 m+1
a3 = po+3 ™ (P1Gun * P2Sjm) + 3 (P3+ P4Cy:n + P5Sjin) (3{31)
. . 7 m+1
Q5™ = Po+4 ™ (PiGun + PaSjn) + 3 (P3+ PaCyn + P5Szn) (3{32)
. . 74 ™
a5 = po+5 ™ (P1Gun * P2Sim) + 3 (P3+ P4Cy:n + P5Sjin) (3{33)
Proof.
. 3 %" (327) 1
doo = = qu10+ an. A1y = P 1—2pg]
h
m m+1
= Po EpS = Po 3 P3
a1 11X 1 1
qg}lz éqg]o’Lﬁ §+Ch j:n+§‘32(h ixn Omh
h
addition rule — m 1 m m 1 m m m
for cosine & (3{27) — Po + é(pl Cj:n + P2 Sj:n) + é(ps + P4 C2j:n + Ps S2j:n)
m+1
= Po + m+t (plcj:n + pzsj:n) + (p3 + p402j:n + p552j:n)
The proof for (3{30){( 3{33) is similar to that of (3{29). O

With the radial eigenvectors¢y = [1;1;1;1;1;1],¢, = ¢, = [0;1;2;3;4;5],
03 = %[O; 2,11, 26,47, 74], and®,4 = ¥5 = %[O; 2;11; 26,47, 74], (3{28){( 3{33) can be

written as
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qirjn-'-1 = Pot (Ol)i med (plcj:n + p23j:n)
+ ™ ((03)ips+ (94)i (PaCyn + P5Szin))

m+1

) Qiry = Po + (¢1)i m+l (piC + p2s)

+ ™ ((03)ips + (04)i (PaC2 + PsS2 ) (3{34)

fori 2 . In particular,

im g =po )  lim (Gng™)(r; )= Ppo;

m!l
converging to a unique pointp,, showing that xX™S(r; ) is C° at the pole.
3.3.3 Eigenspace expansion and curvature continuity
C% and C? continuity can be seen more explicitly by expressing®™s using the
eigenprojection.

Xno
Pk €575 (r; )

k

bemma 2 = po efTS(r )+ prelS(n )+ p2 &T5(n )

3{2
XRTS(I’; ) ( é5)

+ p3efO(r )+ pa€lS(r; )+ pselS(r; ) +o r? (3{35)

Lemma 2 = po+ (par B'C + por B"S )+ par®+ par?B"c, + psr?B's, +0 r?

This expansion using the eigensplines is almost a Taylor exgsion. Peters and Reif
2008 Section 5.2] shows that thecharacteristic spline (r; ) = (ef'S(r; );€8™S(r; )) =
r(B"c ;B"s ) is the only reparameterization, up to linear transformaton, of xRS that
can reproduce a linear Taylor expansion at the pole. Figurés7B, and 3-2 illustrate the
spline rings of , which are regular and injective, validating the reparamedrization. Using
(x;y) .= (r; ), the reparameterized surfac&~"S(x;y) := xR'S(r; ) has the rst-order

Taylor expansion
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XTTS(Xy) = po+ (P1x + pay) +0(r) |
r2[2 m:4 mj

and is thereforeC?! at the pole. By the conditions in Peters and Reif 200§ Section 7.1],
the additional property that (To; 1; 2, 3, 4;s) = (15 ;5 2% 2 2) implies that the limit
surface also has bounded curvature.

In order to take this a step further to C? continuity, we need eigensplinesy™>, 'S,
eE™S to be quadratic with respect to the reparameterization to induce a second-order
Taylor expansion. Preferably, these eigensplines shouldtrbe zero, since that would
result in a zero second derivative and a visible at-spot inHe vicinity of the pole.

(r; )= r(B"c;B"s)is degree 1 inr and degree 3 in , which is the minimum degree
needed to createC? spline rings around the pole. Consequentlgy'™s, €S, and ef™s need
degree (26) to be quadratic in . This implies that it is impossible to create a stationary
C? subdivision for polar con gurations based on uniform splies with degree less than 6 in
the circular direction.

However, in the limit n ! 1 |, the surface around the pole is no longer a spline in the
circular direction, but an arbitrary curve q;; for 2 ; (Figure 3-4B). Denote this case
as RTS , with g ; being the control curvesof this subdivision algorithm. We now show
that a non-trivial second-order Taylor expansion exists athe pole for RTS, .

Lemma 4. €™S(r; ) &(r)op( )=0 % ,implying that
eETsl (r; )=lima &5 ) ="%(r)op( )

Proof. Sincee}(r) is independent of valence, and
e o(r ) &(r)op( ) ="a(r)B"op( ) &(r)op( )
=& (r)(B"op( ) op( ));
we need only examine the spline approximation of pp ) via B". We show that

1. the distance between Bop,( ) and its control polygon is O niz , and that
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2. op/( ) and its linear interpolant (i.e. the control polygon of B'op( )) is O niZ :
Together, these statements imply by the triangle inequalitthat ef™S(r; ) &(r)op( )=
O(Z%), proving the lemma.

Step 1. [Lutterkort and Peters, 200] showed that for uniform cubic splines with control
points [qgj ]2z ,, the distance between the control polygon and the spline igqportional to
the second di erences of the control points% maxfigi; 1 205 + 0ij+1jg. In the context

of this lemma, g; =op, L, and

1 . :
gMmaxfidy 1 20y + Qi 119
'8 9
S j+1 i
—émjax: opy — +0py . 20p 0o
I {z } ’
1 :
=émjax 20p, 1 C,n 20Q Jﬁ
8 9
3 3
-1 max_ opy J j(c 1)j
— 5 M . k:n
Bl 3
1
2
- Taylor _k - i
3 mjaxf 1 c,n0 expan. @) 2 O 2
Step 2. For an arbitrary function f :[a;g 2 ! , @ Taylor expansion ata shows that

a piecewise linear interpolant with distancq} between breakpoints approximate$ with a
deviation of O n% maxyf f °9 . Consequently, the piecewise linear interpolant to g )

converges O n—E =0 5. O
Theorem 1. Inthe limit n!1 , RTS is C? at the pole.

Proof. Assumingn!1 and continuing from (3{35),
RTS¢ r
X (’ )r2[2"‘;4"‘]

— 2 2 2 2
bemmazi = po+(Parc + paors )+ psro+ par<c, +psts, +o r
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Changing from polar to Cartesian coordinatesxy) := (rc ;rs ), X5t (x;y) =

xRTS1 (1; ) reveals the following second-order Taylor expansion at ¢hpole
XRIS1 (x;y) = Po+ (Pix+ pay) + Pa(x®+ y2) + pa(x®  y?)+ ps(2xy) +0 x*+y* |

proving C? continuity at the pole. O

Nevertheless, curvature continuity comes at a cost: we ar@ monger polynomial in the
circular direction. In the Chapter 4, we adapt the intuition developed so far to create &2
bi-3 subdivision algorithm that overcomes these disadvaages.

3.4 Approximation via Mesh Re nement

Mesh re nement is easiest to demonstrate on a control meshthvilatitude-longitude
connectivity of the earth as in Figures2-5B and 2-6. Such aspherical mestconsists
entirely of ordinary quads and exactly two polar con guratons. Spherical meshes have
precisely two directions: A) radial, or longitudinal, coresponding to thej -spokes of
the polar con gurations; and B) circular, or latitudinal, corresponding to thei-links of
the polar con gurations. Each radial sequence of control pats of the spherical mesh is
similarly called a spoke while each (periodic) circular sequence islak. We can perform
radial subdivisionalong the spokes of a spherical mesh by using the special Rifes of
De nition 1 and Figure 3-3in the vicinity of polar vertices, while using univariate cuic
re nement (2{4) away from them. We can also double the valence of each polariex by
performing circular subdivisionalong each link using univariate cubic re nement.

The RTS limit surface is de ned by continually applying radal subdivision and
interpreting links su ciently far away from the polar verte x as the control points of a
uniform bi-3 spline, implying that circular subdivision mg be applied on these links.
Consequently, the RTS limit surface of a spherical mesh careltomputed a la Figure
2-2(A-B) by applying radial subdivision ad in nitum followed by circular subdivision ad

in nitum. An m-times subdivided approximation this limit surface can hece be computed
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by subdividing m times in the radial direction followed bym-times subdividing in the
circular direction, as demonstrated in Figure2-5B.

On the other hand, the curvature-continuous variation RT$ requires each polar
vertex to have in nite valence before radial subdivision igver applied. This is accomplished
by interpreting each link to be the control points of a cubic gline which acts as a control
curve of RTS . The corresponding limit surface can be computed by applygncircular
subdivision ad in nitum (converging to the control curves)followed by radial subdivision.
As a result, anm-times re ned approximation is computed by subdividingm times in the

circular direction followed by m-times in the radial direction.

\

B B>

/
L0

-
1

)

Figure 3-5. Combining Catmull-Clark and RTS. A) Separatinghe input mesh. B)
Subdividing the polar con guration B;) radially then B) circularly for
bounded curvature fed arrows, OR B,) circularly then B,) radially for
curvature continuity (blue arrowg. C) Subdividing the remainder using
Catmull-Clark. D) Joining the re ned meshes after removal boverlapping
facets.

Either mesh re nement technique can be combined with CatmuClark subdivision to
be applicable to arbitrary quad meshes augmented with polaon gurations (see Figure
3-5.

1. Split o polar con gurations: Copy all polar 3-rings and remove each polar vertex

from the input mesh.
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2.  Subdivide polar con gurations:For each polar con guration,

(a) subdivide m times radially, and then

(b) subdivide m times in the circular direction.

3.  Subdivide the remaining meshApply m steps of Catmull-Clark subdivision to the
mesh without the polar vertices.

4.  Merge results:Drop the boundary facets of the meshes subdivided in steps &da3
and join them by identifying the resulting geometrically icentical boundary vertices.

Note that the 2- and 3-links are copied with the polar vertexput not removed from
the rest of the mesh (Figure3-5A), and both Catmull-Clark and polar subdivision re ne
these common links using uniform bi-3 subdivision rules. Entransition between the
Catmull-Clark and polar limit surfaces is thereforeC?.

The disadvantage of such a re nement scheme is that it is noterative. We cannot
take the already-re ned mesh and apply RTS radial subdivisin to converge to the same
limit surface. To avoid separation of the polar con guratim from the rest of the surface,
it would be far better if the subdivision algorithm o ered a smultaneous radial/circular
mesh re nement algorithm in the spirit of Catmull-Clark and Figure 2-3C. Chapter 4

describes such an algorithm.

46



CHAPTER 4
C2 POLAR SUBDIVISION ( C2PS)

4.1 Semi-Stationary Subdivision
RTS can be adapted to non-stationary connectivity while kgeng the weights
dependent only on the connectivity of the mesh. In particula the valence of the polar
vertex doubles after every subdivision. We are no longer lited by stationary subdivision
theory, which requires degree 6 in the circular direction fasecond-order continuity, as
shown previously.
De nition 2.  Denote byC? polar subdivision (C?PS) the algorithm that subdivides an

nm-valent polar con guration g™ to an 2n,,-valent polar con guration g™*! via (see Figure

4-1)
Sa” 3 S
agt =@ g+ N ar;; = z,rqg]o+ an. arr (A1)
. 1 %" 1
afy = @ Toag+ n "otc o+ 5C( ) Ao
1 1% 1 1
= éqgno"‘ o PR L) a1y (4{2)
m+l . m m AO x m
Ary = @ Dyt o € dyy
11 1 1 %
= Mt %l g a1y (4{3)
1 1 1 6 1
1 — 1 —
O3] = ST+ 5820, afy = o)+ g2+ gy,
. 1 1
iy = S8+ 505 (4{4)

whereg™ is obtained after subdividingg™ once in the circular direction. Observe that
37, 941, qg;] are computed via uniform bi-3 spline subdivision. Let the egtor T
denote a single application o€2PS. The limit surface x©°PS is the union of spline rings

Gmg™ whereq™ = T™(qP).
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Figure 4-1. C? polar subdivision rules. The rules are the same as RTS (FiguB-3), except
that the outer i-links require intermediate uniform cubic circular subdiision
(intermediate vertices indicated by2). The re ned mesh ( and dashed line¥
is computed as before from the old mesh (solid lineg with ; and
computed via (3{9) and (3{10) using half-integer indices. As in RTS, bi-3 rules
are applied away from the polar vertex.

Since C2PS subdivides in both the radial and circular directions simitaneously, it
is directly compatible with Catmull-Clark, requiring no mesh separation for re nement:
every quad on the coarse mesh yields four after subdivisieand each polar triangle splits
into two polar triangles and two quads, as illustrated in Figre 4-1. Additionally, the
limit surface is bi-3 and can be computed as a closed-form egpsion, which is di cult to
do for RTS on an in nite-valent vertex. Each subsequent sptie ring has twice as many
polynomial patches and control points as its predecessomdthis exponentially-increasing
order of approximation enables the spline ring sequence tonverge to a second-order
Taylor expansion at the pole.

4.2 Analysis

Since the connectivity is no longer stationary at the polar ertex, the traditional

method of spectral analysis does not directly apply. Howendf we rewrite (4{1){( 4{4)

in eigenspace as we did RTS in Sectidh3.2 we can employ a similar analysis technique.

48



What helps is the intuition from RTS that the second-order epansion at the pole is
determined by the eigensplinegs, multiplied by eigencoe cients py de ned in (3{27).
The eigencoe cient p{' of C2PSis also computed via 8{27) on g™, and we
abbreviate py := p2. The eigensplines ofC2PS are the limit surfaceel’PS := LEPS (v,)
wherevy is an eigenvector of RTS with polar valence,. A superscript of RTS,
disambiguates the eigenspline]’>"™ of RTS on a valencen,, polar con guration.

The following subsections will show the following.

As in RTS, pk2 , IS preserved after every application of {i.e. pE‘*l = kPR =
""*1py (Lemma 5).

T can be approximated in terms opy, , plus a deviation of O Sim for polar
valencen;, (Lemma 6).

Fork2 e, €5°7S converges toel' > at the rate of O & at the pole (Lemma?).

The statements above yield a second-order Taylor expansiohx¢°PS at the pole
proving that it is C? (Theorem 2).

4.2.1 Preservation of eigencoe cients
The following simpli cations can be shown by using the addion rule for sine and

cosine, and the orthogonality of the discrete Fourier basis

8 P
% % Eqih ifa1=a2:O
1 XN xn p ‘
on Cai(g iy2nyg Caz(h 9):nlih = E % Ecal(h %):nqih ifay= a60
g h
-0 otherwise
8
2 P, . _
1 X 1 X 55 hSah LynOih faa= a60
> Sai (g j):znﬁ Ca,(h %):nqih = S 2n ai(h 3)n (4{5)
g h - 0 otherwise

Using these simpli cations, we prove the following lemma foC2PS.

AN

Lemma 5. For the subdivision algorithmC?PS, py = Pk whenk2 gandm O.

Proof. The base casen = 0 of the induction is trivially true. For the inductive step, we

assumep" = "Mpy and show that this property holds forp** as well.
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Case k 21 0; 3g:

1 X
(327)
gt s doo - + - a7y ]
m+1
!
(42) 3qm+i% q
(402) 479 " 4n, Ll
!
L1 X o a® 1, L L .
2N 2000 N 2 5% ) Gy
! . !
as) 3 1 X 1 1 %7
= ZQ%*‘zﬁ; drp; + EQ%*'ﬁ; éqEH
!
1 1 % 1 . .
=12 %mo"'a a1y | =Zpr3n= P53 = "5 ps

The sequence of steps fde = 0 is very similar to those ofk = 3 above, and it similarly

m+l — ~m+l

concludes thatpg 0 Po-

Case k 2f1;2;4;5q:

+1
e o 2 X c g
P1 T o A
!
ap 2 X1 1% 1 1 .
= o0 ¢ %% - 5T C TS0 )T gl ) iy
%m

2 1 . .
(c = co )zﬁ CQT;[]ZQIOT: pT = T pa

The k 2 f 2; 4, 5g cases are derived using a very similar sequence of stepswashg that for

all six casespy'™* = """ py, completing the induction. O

4.2.2 Reformulation of C?PS in terms of the eigencoe cients
In the same vein as 3{28){( 3{33), C2PS can be reformulated to depend only on

Pk2 , plus a deviation that diminishes quickly in the number of subivisions.
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Lemma 6. The C2PS re nement equations(4{1){(4{4) are of the form

m+1

doo - = Po 3 Ps (4{6)
m+1
af] = Pot+ MTH(piC +pos )+ (P3+ PaC2 + PsS2 ) (4{7)
m+1
+ + 1
Oz(] = Po+2 ™ (pic + pas )+ (P3+ PaC2 + PsS2 )+O oo (4(8)
m+1 1
Og(] = Po+3 ™7 (pic + pas)+ (P3+ PaC2 + PsS2 )+O oo (4(9)
m+1

qg?ﬁ = po+4 ™1 (pic + pos )+ (P3+ psaCz + psSz )+ O gl (4{10)

m+1 1

Po+5 ™7 (pic + pos )+ (P3+ PaC + pssz )+ 0O gl (4{11)

0
a
1

Due to the interaction with circular subdivision, the deriation for the four outer links
qg‘ﬁ{qgﬁ is involved and requires the introduction of new abstractios. The proof of
(4{6){( 4{11) is hence deferred to the appendix to maintain the ow of thidiscussion.

These equations can be reduced to

a7 = (P0iPo+ (1)i ™ (pac + pas)

b (05)ps + (02) (PaCo *+ s )+O o (4{12)

fori 2 ¢, diering only by O gm% from (3{34) when the valences are equal.
4.2.3 Convergence of the eigensplines
Here we show thateZ"PS(r; ) converges toel™>* (r; )asr! O.

Lemma 7. €°PS(r; ) €51 (r; ) pmam=0 &

Proof. Since both RTS andC2PS are a ne-invariant, €5°°S(r; )= 5! (r; ) =1, and
the lemma holds. Assume thak > 0, which also implies thatj ] . Let v and w be

the k™ eigenvectors of RTS of valence,, and ng, respectively.

E = q((:ZPS(r.; ) eETSl (r, ) - q((:ZPS( mr; ) eET81( mr; )

r2[2 m;4 m] r2[2;4]
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triangle C2PS; m,. RTShm /s my. RTSnm/ m,. RTS 1 m,.

inequality & CTn ) el )r2[2;4]+ s ) e O r2[2:4]

[CnT"(r(6 ), GrA" (VI ) + & (6 ) R ()

TM(wx) and A™ (vk) have valence npy ; G is linear

= Bn(T™w) A™VONG Y+ i &) &)
Ei:= o( m)| {z ?

Lemma 4) =0 n_%m_ =0 (4#r)

(3(3)
r2[2;4]

1
= E1+O 8_m

By de nition, pn, = nk for h 2 ¢ when computed on either eigenvector, or vi; in other
words, the rst six eigencoe cients of these two eigenvects match. Since 4{12) and
(3{34) de ne T™(w) and A™(vy), respectively, in terms ofpy, ,, and these two formulae
dierby O 2 ,itfollows that T™(w) A™(vi)=0O g . Therefore,E; =0 £ ,and
E =0 & ,proving the lemma. O
4.2.4 Proof of curvature continuity

We can now establish a second-order Taylor expansion at thelp, proving curvature

continuity.

Theorem 2. C2PS is C? at the pole.

Proof. Recall from (3{24) that a polar con guration g° of valenceny can be written as the

following linear combination of the eigenvectorsy, k 2 4p,.

0 Xee 0 C2PS(~0 o C2PS¢,,0
Qi = Pk (Vi) ) L (@) = Pk L (Vi)
k k
C?PS(p. \ — Xo C?PS( .
) x0(n) = P& ()
k
We examine the sequence*PS(r; ) 22 ma ] (33) (GnT™g% (r; ) of spline rings

that approach the pole. Sinca 2 [2 ™;4 ™]) L 2 [2;4], % is bounded away from

0 and1l and has no impact on asymptotic behavior when multiplied. Tis simpli es
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O & =0( =0 (5)*3 =0(rd). Thus,

8|’TI
2 Rro 2
C“PSy,. — C“PS( .
X r, - rl
) e mia ) P 0 ) g )
|
xe RTS 1
Lemma 7 = Pk ek 1 (r; ) +0 =
k | —{z—} r2p2mam

O(r3)

RT.

Poey >t (17 )+ pae >t (r )+ pa&g(r )

+ pa€(n )+ pagf )+ ps CAMN(AS

o
+  opkE&H(n )+0 r?
k=6 r2[2 m;4 mj

2 2
TERSa = Pot T (PaC + Pas )+ rH(Pat Pacy + PsSz) kO 1T

Changing to Cartesian coordinatesx:y) := (rc ;rs ), X¢°PS(x;y) := x*PS(r; ),

C2PS/y- — C2?PSy,,.
X I, =X X, -
( ) r22 m;4 mj ( y) px2+y22[2 m-4 m]

= po+(piX+ pay)+ Pa(X®+ Y+ pa(x®  yA)+ ps(2xy) +0 x*+y? ;

XZ+y22[2 M4 ]
giving an explicit second-order expansion at the pole when ! 1 . Hence the

construction is C2. ]

The explicit Taylor expansion at the pole allows one to comga principal curvatures
and directions. In some constructions, curvature continty comes at the cost of
macroscopic shape deterioration, even though the microgio shape is improved. Chapter
5 shows empirically that our construction does not su er fronthis defect; it generates

surfaces of high visual quality.
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CHAPTER 5
RESULTS AND DISCUSSION

Figure 5-1 shows a side-by-side comparison of RTS, RTS and C?PS. To avoid
curvature uctuations in the rst and second spline rings (Fgure 5-1(A-B)), uniform
(bi)cubic subdivision is applied to compute the re ned 2-hk on the rst subdivision
step (Figure 5-1(C-E)). For RTS, this is equivalent to applying bicubic pola subdivision
on the rst radial subdivision step, while using RTS on all the subsequent ones. The
n-sidedness of the RTS curvature distribution is obvious, wle RTS; and C2PS yield
smoother curvature transitions in the circular direction. C2PS distributes curvature more
evenly, resulting in a lower maximal Gaussian curvature thaRTS or RTS; near the
pole. As expected, for higher valences, the limit surface§tbese three algorithms are
similar (Figure 5-2). Figure 5-3 tests C2PS against various challenging con gurations.
The smooth highlight lines attest to the surface quality in he vicinity of the pole, even on
higher-order saddles.

It may be possible to devise a bi-degree@? polar scheme using a similar technique.
The key ingredient is that the spline rings constituting thelimit surface would need to
shrink more rapidly to the pole. To see this, observe that theeformulation of C?PS in
terms of eigencoe cients (Lemmab) is proved by simplifying the treatment of arbitrary
number of circular subdivisions using a parameterized egaience class a[‘] (gi). The

use of this class contributes a deviation of 031W , Which is the product of and the

1

convergence rate O n% =0 g4 of piecewise linear approximations to cosines and sines.
m

, 0 2 simpliesto O( ) = O(r3),

Section4.2.4showed that for’; = ", = = o

NI

contributing to the third-order term of the Taylor expansion at the pole. While our C2
algorithm is una ected by this, designing aC? algorithm requires understanding the
third-order term precisely. One way to employ the simplicit of our proofs is to enforce
eigenvalues ; = ", = < 3, resulting in a deviation of O 4—,': =o( 3M) that converges to

0 more quickly thanr?, avoiding interference with the third-order expansion.
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RTS

RTS;

C?PS

A B C D E F

Figure 5-1. Comparison of RTS, RTS, and C2PS. (C) spline rings de ning limit surfaces
(A and D) and Gaussian curvature (B and E) of two di erent initialization
strategies of each scheme on Figu&5B input. Direct application produces
(A) a sharper bend in the silhouette and (B) an abrupt curvatue transition
(dark bluemeans zero Gauss curvature), whereas using bicubic subslion to
compute the 2-link for the rst subdivision step improves tle curvature
distribution (C, D, E). (F) RTS reveals an n-sidedness in its curvature
distribution, while the curvature of RTS; and C2PS is much more symmetric.

A. Input B. RTS C.RTS;, D. C?PS

Figure 5-2. RTS, RTS , and C2PS on a polar con guration of valence 20 show that their
limit surfaces and Gaussian curvature distributionsdark blueis zero
curvature) are similar for large polar valences.

Catmull-Clark extraordinary vertices of arbitrary valence can be converted to polar
con gurations, as demonstrated in Figures-4, additionally creating 5-valent extraordinary
vertices (Figure5-4A) or pentagons (Figure5-4C). Thus, it may be possible to deviseC?
algorithms for either 5-valent extraordinary vertices or pntagons to construct surfaces

that are globally C2. This is left for future work.
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A B C D

Figure 5-3. Shape gallery demonstrating tha€?PS performs with good shape. A) Input,
B) twice subdivided mesh, C) Gaussian curvature of limit sdace, and D)
highlight lines. Zero curvature isgreen while negative curvature isblueand
positive is red.
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Figure 5-4. B) An n-valent Catmull-Clark extraordinary vertex can be converéd to either
A) a 2n-valent polar con guration and n 5-valent extraordinary vertices, or C)
a n-valent polar con guration and n pentagons.
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CHAPTER 6
CONCLUSION

For quad meshes, we have introduced the polar con gurationyhich appears
naturally at the ends of elongated objects, like the nose of@dane or the tips of ngers,
where control lines along the same tensor direction meet torin a singularity. We
have presented three polar subdivision algorithms comphte with Catmull-Clark
[Catmull and Clark, 1979 subdivision: RTS, RTS , and C2PS. While RTS surfaces
are only C! with bounded curvature at its pole, RTS and C?PS have been shown to be
fully C2. And while the second-order continuity of RTS is easier to prove, this algorithm
transitions from a polynomial spline boundary to a non-polyomial surface that is, in
general, not easy to compute exactly. Moreover, as a mesh mement algorithm, RTS
is more complex to implement, requiring a logical separatioof the polar con guration
from the rest of the input mesh before subdivision is appliet it. In contrast, the entirely
spline-basedC?PS is simpler both as a mesh re nement algorithm, and for exigitly
evaluating the limit surface. However, sinc€2PS results innon-stationary connectivity,
standard subdivision theory fails to apply, and the proof o€urvature-continuity at the
pole is more complex. Nevertheless, we have shown, in thisady that the algorithm is C?2
and given evidence that it tends to give good shape.

Subdivision algorithms are an accepted standard in animatn and are sometimes used
for conceptual design in CAD. These algorithms have been lmeavoided for high-quality
surfaces in CAD partially due to shape problems near extradinary vertices. We have
gone one step closer to show that a subdivision algorithm mawt be complex and still
have good shape if non-stationary connectivity can be exjtied to increase the order
of approximation in the vicinity of the pole. We o er an additional incentive to use our
method because theory developed ifRgif, 1999 and [Myles et al, 200§ suggests that
curvature continuity may require a degree 6 NURBS surface wh more than 4 NURBS

meet at a point. On the other hand, we have shown that degree 8 su cient for a simple
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subdivision algorithm exploiting non-stationary connedavity. We hope techniques such as

ours help make subdivision surfaces more useful in mainsgtne CAD.
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APPENDIX: C2?PS IN TERMS OF THE EIGENCOEFFICIENTS
Here, we derive in detail the reformulation 4{6){( 4{11) of C?PS. A checkmark & )
indicates that one of these equations has been proved. Whig,* and qg}” are readily

expressed in terms of the eigencoe cients,

m+1l _— 3 m 4 %m m — m 1 m
Qoo ™ = Z%o an. dirp = Po 1—2p3
m m+1
= Po 5Ps = Po 3 Ps (A{1)
L1 1% g 1 1
q’{}[} = éqg]oJf no §+ c + 50 )+ g% ) a1y |
addition rule — m 1— m m 1‘ m m m
for cosine & (3{27) — Po + 2(p1 c + P2'S )+ 6(p3 + P4 C + Ps S2 )
m+1
Lemmas = po+ M (pic + pos )+ (Ps+ pacz +pss2)  (A{2)
i 11 1 1
(4{3) & addit _
for {cosinea& (IIS?{27) qg][{i._ 1_2qr?[1] + l_zqr?[Z] é(pTC + pg]S )
Lemma 5 — 11 m 4 1 m " + : A{3
= 1—2q;[1] 1—2q;[2] T(plc P2S ); (A{3)

the expressions for the four outer linkg), (A{3), gs, g4, and gs are involved due to
circular subdivision, and only the dominant terms will be sbwn and needed. With the
intuition that every point on a spline is an a ne (in fact, convex) combination of the
four B-spline control points that are parametrically closst to it, we de ne the following
equivalence class of a ne combinations.

De nition 3  (a E‘]). Let u be a vector ofn B-spline controlhpoints of a periodic uniform
[

by their Greville abscissae so that adjacent pairs of Grdeilabscissae ar% apart. The

equivalence classa E‘](u) of all local a ne combinations centered at is de ned as

8 9
P 4 —_ 1. P 4 — v and i e
EX“ gUg=1;  JUg g= ; andup;:ii;up 4 are the four E
a f] (u) = E UgUp ¢ control points whose Greville abscissag are closest to E
g

, or have weightug = O if they tie for fourth place.
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Since adjacent Greville abscissae di er b}%, the a ne combinations in a f‘] (u) are
such thatj g j < % = 0O %) if ug 6 0. Cubic B-spline re nement rules ensure that
all a ne combinations resulting from arbitrarily-many cubic B-spline re nements onu
belong in a E‘] (u). The control points in each circularly-subdividedi-link &™ are a ne
combinations of control points in thei-link g". Since these a ne combinations result in
an arbitrary number of cases in our reformulation o€2PS, we focus on simplifying a ne
combinations of trigonometric functions.

Lemma 8. If u = [op,()]g . then for all &y := i gugu[ g2 a{(u), b=
op()+0

Proof.

Case 1: (=0(.e.op( )=0c =1)

I:)4 I:)4
Foru=[1]gp ., b= gugHQFF gUg=1=o0p,().
1

Case 2:u =c,, 60
X4 X4 x4
b= UC gy = UgC (g )+« = Ug Cu(g ICk  Su(e IS«
g g g
x4 % E Taylor expan. &
= Uy 1+0 — ¢, U (g )*O — s, ig =0 %
g | {z } | {z }
fromck(g ) fromsk(g )
1 )
X4 7 X4 i i
=cC, Ug+ KkS, Ug( ¢ )+O 2 = ¢, +0 2
g g

satisfying the theorem.

Case 3:u = s k60

k 1

The proof is almost identical to Case 2 and shows that; ;= s, +0O —E , satisfying

n

the theorem. I

Equipped with Lemmag, we can now estimateqy'; by describing a {',(q5**) 3

on the terms not explicitly written in terms of

=}
3=

q3(] in terms of px, ,. The bound O

px simplies to O %m since 2 f0;1;2gin the relevant cases andh,, = ng2™. For each
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qm+1 4
by 2a {yart),

(A2)& a1 Z m+1 1 1
Lemma 8 tj‘[l] - p0+ P1 C +0 4m + P2 S +0 4m
m+1 1 1
+ + c, +0 — + s +0 —
3 Pst Ps & am Ps S Zm
m+1

. 1
= pot M (pic + p2s )+ (P3+ PaCo + PsS2 )¥0 = (A{4)

3

m+1 m m
For eachtr’s 2 a {1(q5""), there existes 2 a {1(q") and &y 2 a {(q3') so that

[]

qm+1 _ 11 qm 1 qm m+1 1
hmas B(1 = 0 T g Pi€ T pes 0 oo
11 2 m 1
hmas = T3 Pot T(PiC + PaS )t —o—(P3* PaC; + PsSz ) +O oo
1 qm m+1 1
Tt g (P T pes)+O oo
11 5 . 22 .
= 1—2p0+ 3 m l(plc + pos )+ 9 m l(p3"‘ PaC; + PsS2 )
1 1 gm
+0 i (A{5)

gm+1 + 1—2U'[

(A{5) describes the set af‘](qg‘”) recursively with respect tom. Expanding out the

m+1
recursion shows that for eacru?zl 2 a {4(a3"), there existsu?% 2 a 4(q)) so that
| |

g 11 X 5 X1 omeah
"1 T 1 hﬁpO"’g CTam (e rps) |
92 X1 men L1 1 g
Y 17 (P3+ pacz + pssz ) +O g ik T o U1 ]

1 1
seres = 1 Tmmr Pot2 ML st (PaC +p2s)

11 1
+ m+1§ 1 3l (P3s+ psCz + PsSz )
1
3 2 ™ 1 g
+0 gm+1 1 3 + 12m+1 tj'[2]
m+1

]
|

= po+2 ™t (pic + pas )+

1
(Ps+ pacz + pssz )+ O g1 (A{6)
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Sinceqz;7 2 a 1(q5™), it too is described by (A{6), proving 4{8. We similarly
- qq*t 4 1y Lartt 4 1 qp*t 4 1
derive formulas forery 3 a [((a3 ™), oy 3 a (a7 "), and ey 3 a {4(as ),
m+1
automatically yielding formulas forqg}ﬁ, qg‘ﬁ and qg“ﬁ For eachu?a] 2 a {y(a5™),

there exist uﬂ 2a {,(q) and uﬁg; 2 a {,(q7) so that

qmt 1 qm+t 1 qm+t
e e Sl
) _ 1 m 2" 1
(A6) ~ > po+ "(piC +p25)+T(p3+p402 + pssz )+ O an
1 11 m 1
+§ Pot+2 M (pPiC + pos)+ 3 (Ps+ PaCz + pss2 )+ 0 an

m+1 1
3 (P3+ Pacz + pssz )+ O gl (A{7)

Po+3 ™t (pic + pos)+

m+1 m m
For eachwy 2 a {;(qf™"), there existery 2 a {y(a7), &5 2 a {4(q¥), and

'y 2 a {,(ay) so that

qrt 1 qm+t 6 qm+t 1 qm+t
by = gty T gt toghns
AR). () _ 1 m 2 m
“(A7) T g Pot+ "T(PiC + p2s)+ T(p3+p4C2 + PsSz )
6 a1 m 1
+{_3 Pot+2 M(piC + pos)+ 3 (Ps+ pac; + pss2 )+ 0O an
1 26 ™M 1
+§ Po+3 M(piC + pos)+ 3 (Ps+ paC; + pss2 )+ 0O an
m+1 1

Po+4 ™1 (pic + pas)+

(P3+ pacz + pssz )+ O gl

(A{8)

m+1 m m
For eacht’S 2 a {;(q5™"), there existe'2 2 a {1(q3") and &5 2 a {;(q¥) so that

qm+1 _ 1 qm+1 1 qm+1
S L S B
ap) _ 1 m m 1
A7) = 3 Pot2 T(piC + p2s )+ (Ps+ PaCo + P52 )+ O o
1 . 26 M
t 5 Po+3 M (piC + pos)+ 3 (P3+ PaCz + pss2 )+ 0 an
m+1

+ 1
= pot5 M (pic + pos )+ (ps+ paC2 + pssz )+ O gl (A{9)

]
|

3
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